1 /* 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/scopeDesc.hpp" 30 #include "code/vtableStubs.hpp" 31 #include "compiler/abstractCompiler.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compilerOracle.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "interpreter/interpreterRuntime.hpp" 36 #include "memory/gcLocker.inline.hpp" 37 #include "memory/universe.inline.hpp" 38 #include "oops/oop.inline.hpp" 39 #include "prims/forte.hpp" 40 #include "prims/jvmtiExport.hpp" 41 #include "prims/jvmtiRedefineClassesTrace.hpp" 42 #include "prims/methodHandles.hpp" 43 #include "prims/nativeLookup.hpp" 44 #include "runtime/arguments.hpp" 45 #include "runtime/biasedLocking.hpp" 46 #include "runtime/handles.inline.hpp" 47 #include "runtime/init.hpp" 48 #include "runtime/interfaceSupport.hpp" 49 #include "runtime/javaCalls.hpp" 50 #include "runtime/sharedRuntime.hpp" 51 #include "runtime/stubRoutines.hpp" 52 #include "runtime/vframe.hpp" 53 #include "runtime/vframeArray.hpp" 54 #include "utilities/copy.hpp" 55 #include "utilities/dtrace.hpp" 56 #include "utilities/events.hpp" 57 #include "utilities/hashtable.inline.hpp" 58 #include "utilities/xmlstream.hpp" 59 #ifdef TARGET_ARCH_x86 60 # include "nativeInst_x86.hpp" 61 # include "vmreg_x86.inline.hpp" 62 #endif 63 #ifdef TARGET_ARCH_sparc 64 # include "nativeInst_sparc.hpp" 65 # include "vmreg_sparc.inline.hpp" 66 #endif 67 #ifdef TARGET_ARCH_zero 68 # include "nativeInst_zero.hpp" 69 # include "vmreg_zero.inline.hpp" 70 #endif 71 #ifdef TARGET_ARCH_arm 72 # include "nativeInst_arm.hpp" 73 # include "vmreg_arm.inline.hpp" 74 #endif 75 #ifdef TARGET_ARCH_ppc 76 # include "nativeInst_ppc.hpp" 77 # include "vmreg_ppc.inline.hpp" 78 #endif 79 #ifdef COMPILER1 80 #include "c1/c1_Runtime1.hpp" 81 #endif 82 83 // Shared stub locations 84 RuntimeStub* SharedRuntime::_wrong_method_blob; 85 RuntimeStub* SharedRuntime::_ic_miss_blob; 86 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; 87 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; 88 RuntimeStub* SharedRuntime::_resolve_static_call_blob; 89 90 DeoptimizationBlob* SharedRuntime::_deopt_blob; 91 RicochetBlob* SharedRuntime::_ricochet_blob; 92 93 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; 94 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; 95 96 #ifdef COMPILER2 97 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; 98 #endif // COMPILER2 99 100 101 //----------------------------generate_stubs----------------------------------- 102 void SharedRuntime::generate_stubs() { 103 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); 104 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); 105 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); 106 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); 107 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); 108 109 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false); 110 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true); 111 112 generate_ricochet_blob(); 113 generate_deopt_blob(); 114 115 #ifdef COMPILER2 116 generate_uncommon_trap_blob(); 117 #endif // COMPILER2 118 } 119 120 //----------------------------generate_ricochet_blob--------------------------- 121 void SharedRuntime::generate_ricochet_blob() { 122 if (!EnableInvokeDynamic) return; // leave it as a null 123 124 #ifndef TARGET_ARCH_NYI_6939861 125 // allocate space for the code 126 ResourceMark rm; 127 // setup code generation tools 128 CodeBuffer buffer("ricochet_blob", 256 LP64_ONLY(+ 256), 256); // XXX x86 LP64L: 512, 512 129 MacroAssembler* masm = new MacroAssembler(&buffer); 130 131 int bounce_offset = -1, exception_offset = -1, frame_size_in_words = -1; 132 MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &bounce_offset, &exception_offset, &frame_size_in_words); 133 134 // ------------- 135 // make sure all code is generated 136 masm->flush(); 137 138 // failed to generate? 139 if (bounce_offset < 0 || exception_offset < 0 || frame_size_in_words < 0) { 140 assert(false, "bad ricochet blob"); 141 return; 142 } 143 144 _ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words); 145 #endif 146 } 147 148 149 #include <math.h> 150 151 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t); 152 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int, 153 char*, int, char*, int, char*, int); 154 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int, 155 char*, int, char*, int, char*, int); 156 157 // Implementation of SharedRuntime 158 159 #ifndef PRODUCT 160 // For statistics 161 int SharedRuntime::_ic_miss_ctr = 0; 162 int SharedRuntime::_wrong_method_ctr = 0; 163 int SharedRuntime::_resolve_static_ctr = 0; 164 int SharedRuntime::_resolve_virtual_ctr = 0; 165 int SharedRuntime::_resolve_opt_virtual_ctr = 0; 166 int SharedRuntime::_implicit_null_throws = 0; 167 int SharedRuntime::_implicit_div0_throws = 0; 168 int SharedRuntime::_throw_null_ctr = 0; 169 170 int SharedRuntime::_nof_normal_calls = 0; 171 int SharedRuntime::_nof_optimized_calls = 0; 172 int SharedRuntime::_nof_inlined_calls = 0; 173 int SharedRuntime::_nof_megamorphic_calls = 0; 174 int SharedRuntime::_nof_static_calls = 0; 175 int SharedRuntime::_nof_inlined_static_calls = 0; 176 int SharedRuntime::_nof_interface_calls = 0; 177 int SharedRuntime::_nof_optimized_interface_calls = 0; 178 int SharedRuntime::_nof_inlined_interface_calls = 0; 179 int SharedRuntime::_nof_megamorphic_interface_calls = 0; 180 int SharedRuntime::_nof_removable_exceptions = 0; 181 182 int SharedRuntime::_new_instance_ctr=0; 183 int SharedRuntime::_new_array_ctr=0; 184 int SharedRuntime::_multi1_ctr=0; 185 int SharedRuntime::_multi2_ctr=0; 186 int SharedRuntime::_multi3_ctr=0; 187 int SharedRuntime::_multi4_ctr=0; 188 int SharedRuntime::_multi5_ctr=0; 189 int SharedRuntime::_mon_enter_stub_ctr=0; 190 int SharedRuntime::_mon_exit_stub_ctr=0; 191 int SharedRuntime::_mon_enter_ctr=0; 192 int SharedRuntime::_mon_exit_ctr=0; 193 int SharedRuntime::_partial_subtype_ctr=0; 194 int SharedRuntime::_jbyte_array_copy_ctr=0; 195 int SharedRuntime::_jshort_array_copy_ctr=0; 196 int SharedRuntime::_jint_array_copy_ctr=0; 197 int SharedRuntime::_jlong_array_copy_ctr=0; 198 int SharedRuntime::_oop_array_copy_ctr=0; 199 int SharedRuntime::_checkcast_array_copy_ctr=0; 200 int SharedRuntime::_unsafe_array_copy_ctr=0; 201 int SharedRuntime::_generic_array_copy_ctr=0; 202 int SharedRuntime::_slow_array_copy_ctr=0; 203 int SharedRuntime::_find_handler_ctr=0; 204 int SharedRuntime::_rethrow_ctr=0; 205 206 int SharedRuntime::_ICmiss_index = 0; 207 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 208 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 209 210 211 void SharedRuntime::trace_ic_miss(address at) { 212 for (int i = 0; i < _ICmiss_index; i++) { 213 if (_ICmiss_at[i] == at) { 214 _ICmiss_count[i]++; 215 return; 216 } 217 } 218 int index = _ICmiss_index++; 219 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 220 _ICmiss_at[index] = at; 221 _ICmiss_count[index] = 1; 222 } 223 224 void SharedRuntime::print_ic_miss_histogram() { 225 if (ICMissHistogram) { 226 tty->print_cr ("IC Miss Histogram:"); 227 int tot_misses = 0; 228 for (int i = 0; i < _ICmiss_index; i++) { 229 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]); 230 tot_misses += _ICmiss_count[i]; 231 } 232 tty->print_cr ("Total IC misses: %7d", tot_misses); 233 } 234 } 235 #endif // PRODUCT 236 237 #ifndef SERIALGC 238 239 // G1 write-barrier pre: executed before a pointer store. 240 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread)) 241 if (orig == NULL) { 242 assert(false, "should be optimized out"); 243 return; 244 } 245 assert(orig->is_oop(true /* ignore mark word */), "Error"); 246 // store the original value that was in the field reference 247 thread->satb_mark_queue().enqueue(orig); 248 JRT_END 249 250 // G1 write-barrier post: executed after a pointer store. 251 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread)) 252 thread->dirty_card_queue().enqueue(card_addr); 253 JRT_END 254 255 #endif // !SERIALGC 256 257 258 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 259 return x * y; 260 JRT_END 261 262 263 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 264 if (x == min_jlong && y == CONST64(-1)) { 265 return x; 266 } else { 267 return x / y; 268 } 269 JRT_END 270 271 272 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 273 if (x == min_jlong && y == CONST64(-1)) { 274 return 0; 275 } else { 276 return x % y; 277 } 278 JRT_END 279 280 281 const juint float_sign_mask = 0x7FFFFFFF; 282 const juint float_infinity = 0x7F800000; 283 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 284 const julong double_infinity = CONST64(0x7FF0000000000000); 285 286 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 287 #ifdef _WIN64 288 // 64-bit Windows on amd64 returns the wrong values for 289 // infinity operands. 290 union { jfloat f; juint i; } xbits, ybits; 291 xbits.f = x; 292 ybits.f = y; 293 // x Mod Infinity == x unless x is infinity 294 if ( ((xbits.i & float_sign_mask) != float_infinity) && 295 ((ybits.i & float_sign_mask) == float_infinity) ) { 296 return x; 297 } 298 #endif 299 return ((jfloat)fmod((double)x,(double)y)); 300 JRT_END 301 302 303 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 304 #ifdef _WIN64 305 union { jdouble d; julong l; } xbits, ybits; 306 xbits.d = x; 307 ybits.d = y; 308 // x Mod Infinity == x unless x is infinity 309 if ( ((xbits.l & double_sign_mask) != double_infinity) && 310 ((ybits.l & double_sign_mask) == double_infinity) ) { 311 return x; 312 } 313 #endif 314 return ((jdouble)fmod((double)x,(double)y)); 315 JRT_END 316 317 #ifdef __SOFTFP__ 318 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 319 return x + y; 320 JRT_END 321 322 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 323 return x - y; 324 JRT_END 325 326 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 327 return x * y; 328 JRT_END 329 330 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 331 return x / y; 332 JRT_END 333 334 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 335 return x + y; 336 JRT_END 337 338 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 339 return x - y; 340 JRT_END 341 342 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 343 return x * y; 344 JRT_END 345 346 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 347 return x / y; 348 JRT_END 349 350 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 351 return (jfloat)x; 352 JRT_END 353 354 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 355 return (jdouble)x; 356 JRT_END 357 358 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 359 return (jdouble)x; 360 JRT_END 361 362 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 363 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 364 JRT_END 365 366 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 367 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 368 JRT_END 369 370 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 371 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 372 JRT_END 373 374 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 375 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 376 JRT_END 377 378 // Functions to return the opposite of the aeabi functions for nan. 379 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 380 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 381 JRT_END 382 383 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 384 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 385 JRT_END 386 387 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 388 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 389 JRT_END 390 391 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 392 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 393 JRT_END 394 395 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 396 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 397 JRT_END 398 399 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 400 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 401 JRT_END 402 403 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 404 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 405 JRT_END 406 407 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 408 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 409 JRT_END 410 411 // Intrinsics make gcc generate code for these. 412 float SharedRuntime::fneg(float f) { 413 return -f; 414 } 415 416 double SharedRuntime::dneg(double f) { 417 return -f; 418 } 419 420 #endif // __SOFTFP__ 421 422 #if defined(__SOFTFP__) || defined(E500V2) 423 // Intrinsics make gcc generate code for these. 424 double SharedRuntime::dabs(double f) { 425 return (f <= (double)0.0) ? (double)0.0 - f : f; 426 } 427 428 #endif 429 430 #if defined(__SOFTFP__) || defined(PPC) 431 double SharedRuntime::dsqrt(double f) { 432 return sqrt(f); 433 } 434 #endif 435 436 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 437 if (g_isnan(x)) 438 return 0; 439 if (x >= (jfloat) max_jint) 440 return max_jint; 441 if (x <= (jfloat) min_jint) 442 return min_jint; 443 return (jint) x; 444 JRT_END 445 446 447 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 448 if (g_isnan(x)) 449 return 0; 450 if (x >= (jfloat) max_jlong) 451 return max_jlong; 452 if (x <= (jfloat) min_jlong) 453 return min_jlong; 454 return (jlong) x; 455 JRT_END 456 457 458 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 459 if (g_isnan(x)) 460 return 0; 461 if (x >= (jdouble) max_jint) 462 return max_jint; 463 if (x <= (jdouble) min_jint) 464 return min_jint; 465 return (jint) x; 466 JRT_END 467 468 469 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 470 if (g_isnan(x)) 471 return 0; 472 if (x >= (jdouble) max_jlong) 473 return max_jlong; 474 if (x <= (jdouble) min_jlong) 475 return min_jlong; 476 return (jlong) x; 477 JRT_END 478 479 480 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 481 return (jfloat)x; 482 JRT_END 483 484 485 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 486 return (jfloat)x; 487 JRT_END 488 489 490 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 491 return (jdouble)x; 492 JRT_END 493 494 // Exception handling accross interpreter/compiler boundaries 495 // 496 // exception_handler_for_return_address(...) returns the continuation address. 497 // The continuation address is the entry point of the exception handler of the 498 // previous frame depending on the return address. 499 500 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) { 501 assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address)); 502 503 // Reset method handle flag. 504 thread->set_is_method_handle_return(false); 505 506 // The fastest case first 507 CodeBlob* blob = CodeCache::find_blob(return_address); 508 nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL; 509 if (nm != NULL) { 510 // Set flag if return address is a method handle call site. 511 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 512 // native nmethods don't have exception handlers 513 assert(!nm->is_native_method(), "no exception handler"); 514 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 515 if (nm->is_deopt_pc(return_address)) { 516 return SharedRuntime::deopt_blob()->unpack_with_exception(); 517 } else { 518 return nm->exception_begin(); 519 } 520 } 521 522 // Entry code 523 if (StubRoutines::returns_to_call_stub(return_address)) { 524 return StubRoutines::catch_exception_entry(); 525 } 526 // Interpreted code 527 if (Interpreter::contains(return_address)) { 528 return Interpreter::rethrow_exception_entry(); 529 } 530 // Ricochet frame unwind code 531 if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) { 532 return SharedRuntime::ricochet_blob()->exception_addr(); 533 } 534 535 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub"); 536 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!"); 537 538 #ifndef PRODUCT 539 { ResourceMark rm; 540 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address); 541 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 542 tty->print_cr("b) other problem"); 543 } 544 #endif // PRODUCT 545 546 ShouldNotReachHere(); 547 return NULL; 548 } 549 550 551 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address)) 552 return raw_exception_handler_for_return_address(thread, return_address); 553 JRT_END 554 555 556 address SharedRuntime::get_poll_stub(address pc) { 557 address stub; 558 // Look up the code blob 559 CodeBlob *cb = CodeCache::find_blob(pc); 560 561 // Should be an nmethod 562 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" ); 563 564 // Look up the relocation information 565 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc), 566 "safepoint polling: type must be poll" ); 567 568 assert( ((NativeInstruction*)pc)->is_safepoint_poll(), 569 "Only polling locations are used for safepoint"); 570 571 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc); 572 if (at_poll_return) { 573 assert(SharedRuntime::polling_page_return_handler_blob() != NULL, 574 "polling page return stub not created yet"); 575 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 576 } else { 577 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL, 578 "polling page safepoint stub not created yet"); 579 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 580 } 581 #ifndef PRODUCT 582 if( TraceSafepoint ) { 583 char buf[256]; 584 jio_snprintf(buf, sizeof(buf), 585 "... found polling page %s exception at pc = " 586 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 587 at_poll_return ? "return" : "loop", 588 (intptr_t)pc, (intptr_t)stub); 589 tty->print_raw_cr(buf); 590 } 591 #endif // PRODUCT 592 return stub; 593 } 594 595 596 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) { 597 assert(caller.is_interpreted_frame(), ""); 598 int args_size = ArgumentSizeComputer(sig).size() + 1; 599 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack"); 600 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1); 601 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop"); 602 return result; 603 } 604 605 606 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) { 607 if (JvmtiExport::can_post_on_exceptions()) { 608 vframeStream vfst(thread, true); 609 methodHandle method = methodHandle(thread, vfst.method()); 610 address bcp = method()->bcp_from(vfst.bci()); 611 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception()); 612 } 613 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception); 614 } 615 616 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) { 617 Handle h_exception = Exceptions::new_exception(thread, name, message); 618 throw_and_post_jvmti_exception(thread, h_exception); 619 } 620 621 // The interpreter code to call this tracing function is only 622 // called/generated when TraceRedefineClasses has the right bits 623 // set. Since obsolete methods are never compiled, we don't have 624 // to modify the compilers to generate calls to this function. 625 // 626 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 627 JavaThread* thread, methodOopDesc* method)) 628 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call"); 629 630 if (method->is_obsolete()) { 631 // We are calling an obsolete method, but this is not necessarily 632 // an error. Our method could have been redefined just after we 633 // fetched the methodOop from the constant pool. 634 635 // RC_TRACE macro has an embedded ResourceMark 636 RC_TRACE_WITH_THREAD(0x00001000, thread, 637 ("calling obsolete method '%s'", 638 method->name_and_sig_as_C_string())); 639 if (RC_TRACE_ENABLED(0x00002000)) { 640 // this option is provided to debug calls to obsolete methods 641 guarantee(false, "faulting at call to an obsolete method."); 642 } 643 } 644 return 0; 645 JRT_END 646 647 // ret_pc points into caller; we are returning caller's exception handler 648 // for given exception 649 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 650 bool force_unwind, bool top_frame_only) { 651 assert(nm != NULL, "must exist"); 652 ResourceMark rm; 653 654 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 655 // determine handler bci, if any 656 EXCEPTION_MARK; 657 658 int handler_bci = -1; 659 int scope_depth = 0; 660 if (!force_unwind) { 661 int bci = sd->bci(); 662 bool recursive_exception = false; 663 do { 664 bool skip_scope_increment = false; 665 // exception handler lookup 666 KlassHandle ek (THREAD, exception->klass()); 667 handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD); 668 if (HAS_PENDING_EXCEPTION) { 669 recursive_exception = true; 670 // We threw an exception while trying to find the exception handler. 671 // Transfer the new exception to the exception handle which will 672 // be set into thread local storage, and do another lookup for an 673 // exception handler for this exception, this time starting at the 674 // BCI of the exception handler which caused the exception to be 675 // thrown (bugs 4307310 and 4546590). Set "exception" reference 676 // argument to ensure that the correct exception is thrown (4870175). 677 exception = Handle(THREAD, PENDING_EXCEPTION); 678 CLEAR_PENDING_EXCEPTION; 679 if (handler_bci >= 0) { 680 bci = handler_bci; 681 handler_bci = -1; 682 skip_scope_increment = true; 683 } 684 } 685 else { 686 recursive_exception = false; 687 } 688 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 689 sd = sd->sender(); 690 if (sd != NULL) { 691 bci = sd->bci(); 692 } 693 ++scope_depth; 694 } 695 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL)); 696 } 697 698 // found handling method => lookup exception handler 699 int catch_pco = ret_pc - nm->code_begin(); 700 701 ExceptionHandlerTable table(nm); 702 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 703 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) { 704 // Allow abbreviated catch tables. The idea is to allow a method 705 // to materialize its exceptions without committing to the exact 706 // routing of exceptions. In particular this is needed for adding 707 // a synthethic handler to unlock monitors when inlining 708 // synchonized methods since the unlock path isn't represented in 709 // the bytecodes. 710 t = table.entry_for(catch_pco, -1, 0); 711 } 712 713 #ifdef COMPILER1 714 if (t == NULL && nm->is_compiled_by_c1()) { 715 assert(nm->unwind_handler_begin() != NULL, ""); 716 return nm->unwind_handler_begin(); 717 } 718 #endif 719 720 if (t == NULL) { 721 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci); 722 tty->print_cr(" Exception:"); 723 exception->print(); 724 tty->cr(); 725 tty->print_cr(" Compiled exception table :"); 726 table.print(); 727 nm->print_code(); 728 guarantee(false, "missing exception handler"); 729 return NULL; 730 } 731 732 return nm->code_begin() + t->pco(); 733 } 734 735 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread)) 736 // These errors occur only at call sites 737 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError()); 738 JRT_END 739 740 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) 741 // These errors occur only at call sites 742 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 743 JRT_END 744 745 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread)) 746 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 747 JRT_END 748 749 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread)) 750 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 751 JRT_END 752 753 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread)) 754 // This entry point is effectively only used for NullPointerExceptions which occur at inline 755 // cache sites (when the callee activation is not yet set up) so we are at a call site 756 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 757 JRT_END 758 759 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread)) 760 // We avoid using the normal exception construction in this case because 761 // it performs an upcall to Java, and we're already out of stack space. 762 klassOop k = SystemDictionary::StackOverflowError_klass(); 763 oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK); 764 Handle exception (thread, exception_oop); 765 if (StackTraceInThrowable) { 766 java_lang_Throwable::fill_in_stack_trace(exception); 767 } 768 throw_and_post_jvmti_exception(thread, exception); 769 JRT_END 770 771 JRT_ENTRY(void, SharedRuntime::throw_WrongMethodTypeException(JavaThread* thread, oopDesc* required, oopDesc* actual)) 772 assert(thread == JavaThread::current() && required->is_oop() && actual->is_oop(), "bad args"); 773 ResourceMark rm; 774 char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual); 775 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_invoke_WrongMethodTypeException(), message); 776 JRT_END 777 778 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread, 779 address pc, 780 SharedRuntime::ImplicitExceptionKind exception_kind) 781 { 782 address target_pc = NULL; 783 784 if (Interpreter::contains(pc)) { 785 #ifdef CC_INTERP 786 // C++ interpreter doesn't throw implicit exceptions 787 ShouldNotReachHere(); 788 #else 789 switch (exception_kind) { 790 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 791 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 792 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 793 default: ShouldNotReachHere(); 794 } 795 #endif // !CC_INTERP 796 } else { 797 switch (exception_kind) { 798 case STACK_OVERFLOW: { 799 // Stack overflow only occurs upon frame setup; the callee is 800 // going to be unwound. Dispatch to a shared runtime stub 801 // which will cause the StackOverflowError to be fabricated 802 // and processed. 803 // For stack overflow in deoptimization blob, cleanup thread. 804 if (thread->deopt_mark() != NULL) { 805 Deoptimization::cleanup_deopt_info(thread, NULL); 806 } 807 return StubRoutines::throw_StackOverflowError_entry(); 808 } 809 810 case IMPLICIT_NULL: { 811 if (VtableStubs::contains(pc)) { 812 // We haven't yet entered the callee frame. Fabricate an 813 // exception and begin dispatching it in the caller. Since 814 // the caller was at a call site, it's safe to destroy all 815 // caller-saved registers, as these entry points do. 816 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 817 818 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error. 819 if (vt_stub == NULL) return NULL; 820 821 if (vt_stub->is_abstract_method_error(pc)) { 822 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 823 return StubRoutines::throw_AbstractMethodError_entry(); 824 } else { 825 return StubRoutines::throw_NullPointerException_at_call_entry(); 826 } 827 } else { 828 CodeBlob* cb = CodeCache::find_blob(pc); 829 830 // If code blob is NULL, then return NULL to signal handler to report the SEGV error. 831 if (cb == NULL) return NULL; 832 833 // Exception happened in CodeCache. Must be either: 834 // 1. Inline-cache check in C2I handler blob, 835 // 2. Inline-cache check in nmethod, or 836 // 3. Implict null exception in nmethod 837 838 if (!cb->is_nmethod()) { 839 guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(), 840 "exception happened outside interpreter, nmethods and vtable stubs (1)"); 841 // There is no handler here, so we will simply unwind. 842 return StubRoutines::throw_NullPointerException_at_call_entry(); 843 } 844 845 // Otherwise, it's an nmethod. Consult its exception handlers. 846 nmethod* nm = (nmethod*)cb; 847 if (nm->inlinecache_check_contains(pc)) { 848 // exception happened inside inline-cache check code 849 // => the nmethod is not yet active (i.e., the frame 850 // is not set up yet) => use return address pushed by 851 // caller => don't push another return address 852 return StubRoutines::throw_NullPointerException_at_call_entry(); 853 } 854 855 #ifndef PRODUCT 856 _implicit_null_throws++; 857 #endif 858 target_pc = nm->continuation_for_implicit_exception(pc); 859 // If there's an unexpected fault, target_pc might be NULL, 860 // in which case we want to fall through into the normal 861 // error handling code. 862 } 863 864 break; // fall through 865 } 866 867 868 case IMPLICIT_DIVIDE_BY_ZERO: { 869 nmethod* nm = CodeCache::find_nmethod(pc); 870 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions"); 871 #ifndef PRODUCT 872 _implicit_div0_throws++; 873 #endif 874 target_pc = nm->continuation_for_implicit_exception(pc); 875 // If there's an unexpected fault, target_pc might be NULL, 876 // in which case we want to fall through into the normal 877 // error handling code. 878 break; // fall through 879 } 880 881 default: ShouldNotReachHere(); 882 } 883 884 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 885 886 // for AbortVMOnException flag 887 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException")); 888 if (exception_kind == IMPLICIT_NULL) { 889 Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc); 890 } else { 891 Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc); 892 } 893 return target_pc; 894 } 895 896 ShouldNotReachHere(); 897 return NULL; 898 } 899 900 901 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...)) 902 { 903 THROW(vmSymbols::java_lang_UnsatisfiedLinkError()); 904 } 905 JNI_END 906 907 908 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 909 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 910 } 911 912 913 #ifndef PRODUCT 914 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2)) 915 const frame f = thread->last_frame(); 916 assert(f.is_interpreted_frame(), "must be an interpreted frame"); 917 #ifndef PRODUCT 918 methodHandle mh(THREAD, f.interpreter_frame_method()); 919 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2); 920 #endif // !PRODUCT 921 return preserve_this_value; 922 JRT_END 923 #endif // !PRODUCT 924 925 926 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts)) 927 os::yield_all(attempts); 928 JRT_END 929 930 931 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) 932 assert(obj->is_oop(), "must be a valid oop"); 933 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise"); 934 instanceKlass::register_finalizer(instanceOop(obj), CHECK); 935 JRT_END 936 937 938 jlong SharedRuntime::get_java_tid(Thread* thread) { 939 if (thread != NULL) { 940 if (thread->is_Java_thread()) { 941 oop obj = ((JavaThread*)thread)->threadObj(); 942 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj); 943 } 944 } 945 return 0; 946 } 947 948 /** 949 * This function ought to be a void function, but cannot be because 950 * it gets turned into a tail-call on sparc, which runs into dtrace bug 951 * 6254741. Once that is fixed we can remove the dummy return value. 952 */ 953 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 954 return dtrace_object_alloc_base(Thread::current(), o); 955 } 956 957 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) { 958 assert(DTraceAllocProbes, "wrong call"); 959 Klass* klass = o->blueprint(); 960 int size = o->size(); 961 Symbol* name = klass->name(); 962 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread), 963 name->bytes(), name->utf8_length(), size * HeapWordSize); 964 return 0; 965 } 966 967 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 968 JavaThread* thread, methodOopDesc* method)) 969 assert(DTraceMethodProbes, "wrong call"); 970 Symbol* kname = method->klass_name(); 971 Symbol* name = method->name(); 972 Symbol* sig = method->signature(); 973 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread), 974 kname->bytes(), kname->utf8_length(), 975 name->bytes(), name->utf8_length(), 976 sig->bytes(), sig->utf8_length()); 977 return 0; 978 JRT_END 979 980 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 981 JavaThread* thread, methodOopDesc* method)) 982 assert(DTraceMethodProbes, "wrong call"); 983 Symbol* kname = method->klass_name(); 984 Symbol* name = method->name(); 985 Symbol* sig = method->signature(); 986 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread), 987 kname->bytes(), kname->utf8_length(), 988 name->bytes(), name->utf8_length(), 989 sig->bytes(), sig->utf8_length()); 990 return 0; 991 JRT_END 992 993 994 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 995 // for a call current in progress, i.e., arguments has been pushed on stack 996 // put callee has not been invoked yet. Used by: resolve virtual/static, 997 // vtable updates, etc. Caller frame must be compiled. 998 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 999 ResourceMark rm(THREAD); 1000 1001 // last java frame on stack (which includes native call frames) 1002 vframeStream vfst(thread, true); // Do not skip and javaCalls 1003 1004 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle())); 1005 } 1006 1007 1008 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1009 // for a call current in progress, i.e., arguments has been pushed on stack 1010 // but callee has not been invoked yet. Caller frame must be compiled. 1011 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread, 1012 vframeStream& vfst, 1013 Bytecodes::Code& bc, 1014 CallInfo& callinfo, TRAPS) { 1015 Handle receiver; 1016 Handle nullHandle; //create a handy null handle for exception returns 1017 1018 assert(!vfst.at_end(), "Java frame must exist"); 1019 1020 // Find caller and bci from vframe 1021 methodHandle caller (THREAD, vfst.method()); 1022 int bci = vfst.bci(); 1023 1024 // Find bytecode 1025 Bytecode_invoke bytecode(caller, bci); 1026 bc = bytecode.java_code(); 1027 int bytecode_index = bytecode.index(); 1028 1029 // Find receiver for non-static call 1030 if (bc != Bytecodes::_invokestatic) { 1031 // This register map must be update since we need to find the receiver for 1032 // compiled frames. The receiver might be in a register. 1033 RegisterMap reg_map2(thread); 1034 frame stubFrame = thread->last_frame(); 1035 // Caller-frame is a compiled frame 1036 frame callerFrame = stubFrame.sender(®_map2); 1037 1038 methodHandle callee = bytecode.static_target(CHECK_(nullHandle)); 1039 if (callee.is_null()) { 1040 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1041 } 1042 // Retrieve from a compiled argument list 1043 receiver = Handle(THREAD, callerFrame.retrieve_receiver(®_map2)); 1044 1045 if (receiver.is_null()) { 1046 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1047 } 1048 } 1049 1050 // Resolve method. This is parameterized by bytecode. 1051 constantPoolHandle constants (THREAD, caller->constants()); 1052 assert (receiver.is_null() || receiver->is_oop(), "wrong receiver"); 1053 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle)); 1054 1055 #ifdef ASSERT 1056 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1057 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) { 1058 assert(receiver.not_null(), "should have thrown exception"); 1059 KlassHandle receiver_klass (THREAD, receiver->klass()); 1060 klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle)); 1061 // klass is already loaded 1062 KlassHandle static_receiver_klass (THREAD, rk); 1063 assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass"); 1064 if (receiver_klass->oop_is_instance()) { 1065 if (instanceKlass::cast(receiver_klass())->is_not_initialized()) { 1066 tty->print_cr("ERROR: Klass not yet initialized!!"); 1067 receiver_klass.print(); 1068 } 1069 assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized"); 1070 } 1071 } 1072 #endif 1073 1074 return receiver; 1075 } 1076 1077 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) { 1078 ResourceMark rm(THREAD); 1079 // We need first to check if any Java activations (compiled, interpreted) 1080 // exist on the stack since last JavaCall. If not, we need 1081 // to get the target method from the JavaCall wrapper. 1082 vframeStream vfst(thread, true); // Do not skip any javaCalls 1083 methodHandle callee_method; 1084 if (vfst.at_end()) { 1085 // No Java frames were found on stack since we did the JavaCall. 1086 // Hence the stack can only contain an entry_frame. We need to 1087 // find the target method from the stub frame. 1088 RegisterMap reg_map(thread, false); 1089 frame fr = thread->last_frame(); 1090 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1091 fr = fr.sender(®_map); 1092 assert(fr.is_entry_frame(), "must be"); 1093 // fr is now pointing to the entry frame. 1094 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method()); 1095 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??"); 1096 } else { 1097 Bytecodes::Code bc; 1098 CallInfo callinfo; 1099 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle())); 1100 callee_method = callinfo.selected_method(); 1101 } 1102 assert(callee_method()->is_method(), "must be"); 1103 return callee_method; 1104 } 1105 1106 // Resolves a call. 1107 methodHandle SharedRuntime::resolve_helper(JavaThread *thread, 1108 bool is_virtual, 1109 bool is_optimized, TRAPS) { 1110 methodHandle callee_method; 1111 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); 1112 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 1113 int retry_count = 0; 1114 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() && 1115 callee_method->method_holder() != SystemDictionary::Object_klass()) { 1116 // If has a pending exception then there is no need to re-try to 1117 // resolve this method. 1118 // If the method has been redefined, we need to try again. 1119 // Hack: we have no way to update the vtables of arrays, so don't 1120 // require that java.lang.Object has been updated. 1121 1122 // It is very unlikely that method is redefined more than 100 times 1123 // in the middle of resolve. If it is looping here more than 100 times 1124 // means then there could be a bug here. 1125 guarantee((retry_count++ < 100), 1126 "Could not resolve to latest version of redefined method"); 1127 // method is redefined in the middle of resolve so re-try. 1128 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); 1129 } 1130 } 1131 return callee_method; 1132 } 1133 1134 // Resolves a call. The compilers generate code for calls that go here 1135 // and are patched with the real destination of the call. 1136 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread, 1137 bool is_virtual, 1138 bool is_optimized, TRAPS) { 1139 1140 ResourceMark rm(thread); 1141 RegisterMap cbl_map(thread, false); 1142 frame caller_frame = thread->last_frame().sender(&cbl_map); 1143 1144 CodeBlob* caller_cb = caller_frame.cb(); 1145 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod"); 1146 nmethod* caller_nm = caller_cb->as_nmethod_or_null(); 1147 // make sure caller is not getting deoptimized 1148 // and removed before we are done with it. 1149 // CLEANUP - with lazy deopt shouldn't need this lock 1150 nmethodLocker caller_lock(caller_nm); 1151 1152 1153 // determine call info & receiver 1154 // note: a) receiver is NULL for static calls 1155 // b) an exception is thrown if receiver is NULL for non-static calls 1156 CallInfo call_info; 1157 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1158 Handle receiver = find_callee_info(thread, invoke_code, 1159 call_info, CHECK_(methodHandle())); 1160 methodHandle callee_method = call_info.selected_method(); 1161 1162 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) || 1163 ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode"); 1164 1165 #ifndef PRODUCT 1166 // tracing/debugging/statistics 1167 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1168 (is_virtual) ? (&_resolve_virtual_ctr) : 1169 (&_resolve_static_ctr); 1170 Atomic::inc(addr); 1171 1172 if (TraceCallFixup) { 1173 ResourceMark rm(thread); 1174 tty->print("resolving %s%s (%s) call to", 1175 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1176 Bytecodes::name(invoke_code)); 1177 callee_method->print_short_name(tty); 1178 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1179 } 1180 #endif 1181 1182 // JSR 292 1183 // If the resolved method is a MethodHandle invoke target the call 1184 // site must be a MethodHandle call site. 1185 if (callee_method->is_method_handle_invoke()) { 1186 assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site"); 1187 } 1188 1189 // Compute entry points. This might require generation of C2I converter 1190 // frames, so we cannot be holding any locks here. Furthermore, the 1191 // computation of the entry points is independent of patching the call. We 1192 // always return the entry-point, but we only patch the stub if the call has 1193 // not been deoptimized. Return values: For a virtual call this is an 1194 // (cached_oop, destination address) pair. For a static call/optimized 1195 // virtual this is just a destination address. 1196 1197 StaticCallInfo static_call_info; 1198 CompiledICInfo virtual_call_info; 1199 1200 // Make sure the callee nmethod does not get deoptimized and removed before 1201 // we are done patching the code. 1202 nmethod* callee_nm = callee_method->code(); 1203 nmethodLocker nl_callee(callee_nm); 1204 #ifdef ASSERT 1205 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below 1206 #endif 1207 1208 if (is_virtual) { 1209 assert(receiver.not_null(), "sanity check"); 1210 bool static_bound = call_info.resolved_method()->can_be_statically_bound(); 1211 KlassHandle h_klass(THREAD, receiver->klass()); 1212 CompiledIC::compute_monomorphic_entry(callee_method, h_klass, 1213 is_optimized, static_bound, virtual_call_info, 1214 CHECK_(methodHandle())); 1215 } else { 1216 // static call 1217 CompiledStaticCall::compute_entry(callee_method, static_call_info); 1218 } 1219 1220 // grab lock, check for deoptimization and potentially patch caller 1221 { 1222 MutexLocker ml_patch(CompiledIC_lock); 1223 1224 // Now that we are ready to patch if the methodOop was redefined then 1225 // don't update call site and let the caller retry. 1226 1227 if (!callee_method->is_old()) { 1228 #ifdef ASSERT 1229 // We must not try to patch to jump to an already unloaded method. 1230 if (dest_entry_point != 0) { 1231 assert(CodeCache::find_blob(dest_entry_point) != NULL, 1232 "should not unload nmethod while locked"); 1233 } 1234 #endif 1235 if (is_virtual) { 1236 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc()); 1237 if (inline_cache->is_clean()) { 1238 inline_cache->set_to_monomorphic(virtual_call_info); 1239 } 1240 } else { 1241 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc()); 1242 if (ssc->is_clean()) ssc->set(static_call_info); 1243 } 1244 } 1245 1246 } // unlock CompiledIC_lock 1247 1248 return callee_method; 1249 } 1250 1251 1252 // Inline caches exist only in compiled code 1253 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread)) 1254 #ifdef ASSERT 1255 RegisterMap reg_map(thread, false); 1256 frame stub_frame = thread->last_frame(); 1257 assert(stub_frame.is_runtime_frame(), "sanity check"); 1258 frame caller_frame = stub_frame.sender(®_map); 1259 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame"); 1260 assert(!caller_frame.is_ricochet_frame(), "unexpected frame"); 1261 #endif /* ASSERT */ 1262 1263 methodHandle callee_method; 1264 JRT_BLOCK 1265 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL); 1266 // Return methodOop through TLS 1267 thread->set_vm_result(callee_method()); 1268 JRT_BLOCK_END 1269 // return compiled code entry point after potential safepoints 1270 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1271 return callee_method->verified_code_entry(); 1272 JRT_END 1273 1274 1275 // Handle call site that has been made non-entrant 1276 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread)) 1277 // 6243940 We might end up in here if the callee is deoptimized 1278 // as we race to call it. We don't want to take a safepoint if 1279 // the caller was interpreted because the caller frame will look 1280 // interpreted to the stack walkers and arguments are now 1281 // "compiled" so it is much better to make this transition 1282 // invisible to the stack walking code. The i2c path will 1283 // place the callee method in the callee_target. It is stashed 1284 // there because if we try and find the callee by normal means a 1285 // safepoint is possible and have trouble gc'ing the compiled args. 1286 RegisterMap reg_map(thread, false); 1287 frame stub_frame = thread->last_frame(); 1288 assert(stub_frame.is_runtime_frame(), "sanity check"); 1289 frame caller_frame = stub_frame.sender(®_map); 1290 1291 // MethodHandle invokes don't have a CompiledIC and should always 1292 // simply redispatch to the callee_target. 1293 address sender_pc = caller_frame.pc(); 1294 CodeBlob* sender_cb = caller_frame.cb(); 1295 nmethod* sender_nm = sender_cb->as_nmethod_or_null(); 1296 bool is_mh_invoke_via_adapter = false; // Direct c2c call or via adapter? 1297 if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) { 1298 // If the callee_target is set, then we have come here via an i2c 1299 // adapter. 1300 methodOop callee = thread->callee_target(); 1301 if (callee != NULL) { 1302 assert(callee->is_method(), "sanity"); 1303 is_mh_invoke_via_adapter = true; 1304 } 1305 } 1306 1307 if (caller_frame.is_interpreted_frame() || 1308 caller_frame.is_entry_frame() || 1309 caller_frame.is_ricochet_frame() || 1310 is_mh_invoke_via_adapter) { 1311 methodOop callee = thread->callee_target(); 1312 guarantee(callee != NULL && callee->is_method(), "bad handshake"); 1313 thread->set_vm_result(callee); 1314 thread->set_callee_target(NULL); 1315 return callee->get_c2i_entry(); 1316 } 1317 1318 // Must be compiled to compiled path which is safe to stackwalk 1319 methodHandle callee_method; 1320 JRT_BLOCK 1321 // Force resolving of caller (if we called from compiled frame) 1322 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL); 1323 thread->set_vm_result(callee_method()); 1324 JRT_BLOCK_END 1325 // return compiled code entry point after potential safepoints 1326 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1327 return callee_method->verified_code_entry(); 1328 JRT_END 1329 1330 1331 // resolve a static call and patch code 1332 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread )) 1333 methodHandle callee_method; 1334 JRT_BLOCK 1335 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL); 1336 thread->set_vm_result(callee_method()); 1337 JRT_BLOCK_END 1338 // return compiled code entry point after potential safepoints 1339 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1340 return callee_method->verified_code_entry(); 1341 JRT_END 1342 1343 1344 // resolve virtual call and update inline cache to monomorphic 1345 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread )) 1346 methodHandle callee_method; 1347 JRT_BLOCK 1348 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL); 1349 thread->set_vm_result(callee_method()); 1350 JRT_BLOCK_END 1351 // return compiled code entry point after potential safepoints 1352 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1353 return callee_method->verified_code_entry(); 1354 JRT_END 1355 1356 1357 // Resolve a virtual call that can be statically bound (e.g., always 1358 // monomorphic, so it has no inline cache). Patch code to resolved target. 1359 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread)) 1360 methodHandle callee_method; 1361 JRT_BLOCK 1362 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL); 1363 thread->set_vm_result(callee_method()); 1364 JRT_BLOCK_END 1365 // return compiled code entry point after potential safepoints 1366 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1367 return callee_method->verified_code_entry(); 1368 JRT_END 1369 1370 1371 1372 1373 1374 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) { 1375 ResourceMark rm(thread); 1376 CallInfo call_info; 1377 Bytecodes::Code bc; 1378 1379 // receiver is NULL for static calls. An exception is thrown for NULL 1380 // receivers for non-static calls 1381 Handle receiver = find_callee_info(thread, bc, call_info, 1382 CHECK_(methodHandle())); 1383 // Compiler1 can produce virtual call sites that can actually be statically bound 1384 // If we fell thru to below we would think that the site was going megamorphic 1385 // when in fact the site can never miss. Worse because we'd think it was megamorphic 1386 // we'd try and do a vtable dispatch however methods that can be statically bound 1387 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a 1388 // reresolution of the call site (as if we did a handle_wrong_method and not an 1389 // plain ic_miss) and the site will be converted to an optimized virtual call site 1390 // never to miss again. I don't believe C2 will produce code like this but if it 1391 // did this would still be the correct thing to do for it too, hence no ifdef. 1392 // 1393 if (call_info.resolved_method()->can_be_statically_bound()) { 1394 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle())); 1395 if (TraceCallFixup) { 1396 RegisterMap reg_map(thread, false); 1397 frame caller_frame = thread->last_frame().sender(®_map); 1398 ResourceMark rm(thread); 1399 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc)); 1400 callee_method->print_short_name(tty); 1401 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc()); 1402 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1403 } 1404 return callee_method; 1405 } 1406 1407 methodHandle callee_method = call_info.selected_method(); 1408 1409 bool should_be_mono = false; 1410 1411 #ifndef PRODUCT 1412 Atomic::inc(&_ic_miss_ctr); 1413 1414 // Statistics & Tracing 1415 if (TraceCallFixup) { 1416 ResourceMark rm(thread); 1417 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1418 callee_method->print_short_name(tty); 1419 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1420 } 1421 1422 if (ICMissHistogram) { 1423 MutexLocker m(VMStatistic_lock); 1424 RegisterMap reg_map(thread, false); 1425 frame f = thread->last_frame().real_sender(®_map);// skip runtime stub 1426 // produce statistics under the lock 1427 trace_ic_miss(f.pc()); 1428 } 1429 #endif 1430 1431 // install an event collector so that when a vtable stub is created the 1432 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1433 // event can't be posted when the stub is created as locks are held 1434 // - instead the event will be deferred until the event collector goes 1435 // out of scope. 1436 JvmtiDynamicCodeEventCollector event_collector; 1437 1438 // Update inline cache to megamorphic. Skip update if caller has been 1439 // made non-entrant or we are called from interpreted. 1440 { MutexLocker ml_patch (CompiledIC_lock); 1441 RegisterMap reg_map(thread, false); 1442 frame caller_frame = thread->last_frame().sender(®_map); 1443 CodeBlob* cb = caller_frame.cb(); 1444 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) { 1445 // Not a non-entrant nmethod, so find inline_cache 1446 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc()); 1447 bool should_be_mono = false; 1448 if (inline_cache->is_optimized()) { 1449 if (TraceCallFixup) { 1450 ResourceMark rm(thread); 1451 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc)); 1452 callee_method->print_short_name(tty); 1453 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1454 } 1455 should_be_mono = true; 1456 } else { 1457 compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop(); 1458 if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) { 1459 1460 if (receiver()->klass() == ic_oop->holder_klass()) { 1461 // This isn't a real miss. We must have seen that compiled code 1462 // is now available and we want the call site converted to a 1463 // monomorphic compiled call site. 1464 // We can't assert for callee_method->code() != NULL because it 1465 // could have been deoptimized in the meantime 1466 if (TraceCallFixup) { 1467 ResourceMark rm(thread); 1468 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc)); 1469 callee_method->print_short_name(tty); 1470 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1471 } 1472 should_be_mono = true; 1473 } 1474 } 1475 } 1476 1477 if (should_be_mono) { 1478 1479 // We have a path that was monomorphic but was going interpreted 1480 // and now we have (or had) a compiled entry. We correct the IC 1481 // by using a new icBuffer. 1482 CompiledICInfo info; 1483 KlassHandle receiver_klass(THREAD, receiver()->klass()); 1484 inline_cache->compute_monomorphic_entry(callee_method, 1485 receiver_klass, 1486 inline_cache->is_optimized(), 1487 false, 1488 info, CHECK_(methodHandle())); 1489 inline_cache->set_to_monomorphic(info); 1490 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) { 1491 // Change to megamorphic 1492 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle())); 1493 } else { 1494 // Either clean or megamorphic 1495 } 1496 } 1497 } // Release CompiledIC_lock 1498 1499 return callee_method; 1500 } 1501 1502 // 1503 // Resets a call-site in compiled code so it will get resolved again. 1504 // This routines handles both virtual call sites, optimized virtual call 1505 // sites, and static call sites. Typically used to change a call sites 1506 // destination from compiled to interpreted. 1507 // 1508 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) { 1509 ResourceMark rm(thread); 1510 RegisterMap reg_map(thread, false); 1511 frame stub_frame = thread->last_frame(); 1512 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1513 frame caller = stub_frame.sender(®_map); 1514 1515 // Do nothing if the frame isn't a live compiled frame. 1516 // nmethod could be deoptimized by the time we get here 1517 // so no update to the caller is needed. 1518 1519 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) { 1520 1521 address pc = caller.pc(); 1522 Events::log("update call-site at pc " INTPTR_FORMAT, pc); 1523 1524 // Default call_addr is the location of the "basic" call. 1525 // Determine the address of the call we a reresolving. With 1526 // Inline Caches we will always find a recognizable call. 1527 // With Inline Caches disabled we may or may not find a 1528 // recognizable call. We will always find a call for static 1529 // calls and for optimized virtual calls. For vanilla virtual 1530 // calls it depends on the state of the UseInlineCaches switch. 1531 // 1532 // With Inline Caches disabled we can get here for a virtual call 1533 // for two reasons: 1534 // 1 - calling an abstract method. The vtable for abstract methods 1535 // will run us thru handle_wrong_method and we will eventually 1536 // end up in the interpreter to throw the ame. 1537 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1538 // call and between the time we fetch the entry address and 1539 // we jump to it the target gets deoptimized. Similar to 1 1540 // we will wind up in the interprter (thru a c2i with c2). 1541 // 1542 address call_addr = NULL; 1543 { 1544 // Get call instruction under lock because another thread may be 1545 // busy patching it. 1546 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); 1547 // Location of call instruction 1548 if (NativeCall::is_call_before(pc)) { 1549 NativeCall *ncall = nativeCall_before(pc); 1550 call_addr = ncall->instruction_address(); 1551 } 1552 } 1553 1554 // Check for static or virtual call 1555 bool is_static_call = false; 1556 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1557 // Make sure nmethod doesn't get deoptimized and removed until 1558 // this is done with it. 1559 // CLEANUP - with lazy deopt shouldn't need this lock 1560 nmethodLocker nmlock(caller_nm); 1561 1562 if (call_addr != NULL) { 1563 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1564 int ret = iter.next(); // Get item 1565 if (ret) { 1566 assert(iter.addr() == call_addr, "must find call"); 1567 if (iter.type() == relocInfo::static_call_type) { 1568 is_static_call = true; 1569 } else { 1570 assert(iter.type() == relocInfo::virtual_call_type || 1571 iter.type() == relocInfo::opt_virtual_call_type 1572 , "unexpected relocInfo. type"); 1573 } 1574 } else { 1575 assert(!UseInlineCaches, "relocation info. must exist for this address"); 1576 } 1577 1578 // Cleaning the inline cache will force a new resolve. This is more robust 1579 // than directly setting it to the new destination, since resolving of calls 1580 // is always done through the same code path. (experience shows that it 1581 // leads to very hard to track down bugs, if an inline cache gets updated 1582 // to a wrong method). It should not be performance critical, since the 1583 // resolve is only done once. 1584 1585 MutexLocker ml(CompiledIC_lock); 1586 // 1587 // We do not patch the call site if the nmethod has been made non-entrant 1588 // as it is a waste of time 1589 // 1590 if (caller_nm->is_in_use()) { 1591 if (is_static_call) { 1592 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr); 1593 ssc->set_to_clean(); 1594 } else { 1595 // compiled, dispatched call (which used to call an interpreted method) 1596 CompiledIC* inline_cache = CompiledIC_at(call_addr); 1597 inline_cache->set_to_clean(); 1598 } 1599 } 1600 } 1601 1602 } 1603 1604 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle())); 1605 1606 1607 #ifndef PRODUCT 1608 Atomic::inc(&_wrong_method_ctr); 1609 1610 if (TraceCallFixup) { 1611 ResourceMark rm(thread); 1612 tty->print("handle_wrong_method reresolving call to"); 1613 callee_method->print_short_name(tty); 1614 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1615 } 1616 #endif 1617 1618 return callee_method; 1619 } 1620 1621 // --------------------------------------------------------------------------- 1622 // We are calling the interpreter via a c2i. Normally this would mean that 1623 // we were called by a compiled method. However we could have lost a race 1624 // where we went int -> i2c -> c2i and so the caller could in fact be 1625 // interpreted. If the caller is compiled we attempt to patch the caller 1626 // so he no longer calls into the interpreter. 1627 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc)) 1628 methodOop moop(method); 1629 1630 address entry_point = moop->from_compiled_entry(); 1631 1632 // It's possible that deoptimization can occur at a call site which hasn't 1633 // been resolved yet, in which case this function will be called from 1634 // an nmethod that has been patched for deopt and we can ignore the 1635 // request for a fixup. 1636 // Also it is possible that we lost a race in that from_compiled_entry 1637 // is now back to the i2c in that case we don't need to patch and if 1638 // we did we'd leap into space because the callsite needs to use 1639 // "to interpreter" stub in order to load up the methodOop. Don't 1640 // ask me how I know this... 1641 1642 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1643 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) { 1644 return; 1645 } 1646 1647 // The check above makes sure this is a nmethod. 1648 nmethod* nm = cb->as_nmethod_or_null(); 1649 assert(nm, "must be"); 1650 1651 // Don't fixup MethodHandle call sites as c2i/i2c adapters are used 1652 // to implement MethodHandle actions. 1653 if (nm->is_method_handle_return(caller_pc)) { 1654 return; 1655 } 1656 1657 // There is a benign race here. We could be attempting to patch to a compiled 1658 // entry point at the same time the callee is being deoptimized. If that is 1659 // the case then entry_point may in fact point to a c2i and we'd patch the 1660 // call site with the same old data. clear_code will set code() to NULL 1661 // at the end of it. If we happen to see that NULL then we can skip trying 1662 // to patch. If we hit the window where the callee has a c2i in the 1663 // from_compiled_entry and the NULL isn't present yet then we lose the race 1664 // and patch the code with the same old data. Asi es la vida. 1665 1666 if (moop->code() == NULL) return; 1667 1668 if (nm->is_in_use()) { 1669 1670 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1671 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); 1672 if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) { 1673 NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset); 1674 // 1675 // bug 6281185. We might get here after resolving a call site to a vanilla 1676 // virtual call. Because the resolvee uses the verified entry it may then 1677 // see compiled code and attempt to patch the site by calling us. This would 1678 // then incorrectly convert the call site to optimized and its downhill from 1679 // there. If you're lucky you'll get the assert in the bugid, if not you've 1680 // just made a call site that could be megamorphic into a monomorphic site 1681 // for the rest of its life! Just another racing bug in the life of 1682 // fixup_callers_callsite ... 1683 // 1684 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address()); 1685 iter.next(); 1686 assert(iter.has_current(), "must have a reloc at java call site"); 1687 relocInfo::relocType typ = iter.reloc()->type(); 1688 if ( typ != relocInfo::static_call_type && 1689 typ != relocInfo::opt_virtual_call_type && 1690 typ != relocInfo::static_stub_type) { 1691 return; 1692 } 1693 address destination = call->destination(); 1694 if (destination != entry_point) { 1695 CodeBlob* callee = CodeCache::find_blob(destination); 1696 // callee == cb seems weird. It means calling interpreter thru stub. 1697 if (callee == cb || callee->is_adapter_blob()) { 1698 // static call or optimized virtual 1699 if (TraceCallFixup) { 1700 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); 1701 moop->print_short_name(tty); 1702 tty->print_cr(" to " INTPTR_FORMAT, entry_point); 1703 } 1704 call->set_destination_mt_safe(entry_point); 1705 } else { 1706 if (TraceCallFixup) { 1707 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); 1708 moop->print_short_name(tty); 1709 tty->print_cr(" to " INTPTR_FORMAT, entry_point); 1710 } 1711 // assert is too strong could also be resolve destinations. 1712 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be"); 1713 } 1714 } else { 1715 if (TraceCallFixup) { 1716 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); 1717 moop->print_short_name(tty); 1718 tty->print_cr(" to " INTPTR_FORMAT, entry_point); 1719 } 1720 } 1721 } 1722 } 1723 1724 IRT_END 1725 1726 1727 // same as JVM_Arraycopy, but called directly from compiled code 1728 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1729 oopDesc* dest, jint dest_pos, 1730 jint length, 1731 JavaThread* thread)) { 1732 #ifndef PRODUCT 1733 _slow_array_copy_ctr++; 1734 #endif 1735 // Check if we have null pointers 1736 if (src == NULL || dest == NULL) { 1737 THROW(vmSymbols::java_lang_NullPointerException()); 1738 } 1739 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1740 // even though the copy_array API also performs dynamic checks to ensure 1741 // that src and dest are truly arrays (and are conformable). 1742 // The copy_array mechanism is awkward and could be removed, but 1743 // the compilers don't call this function except as a last resort, 1744 // so it probably doesn't matter. 1745 Klass::cast(src->klass())->copy_array((arrayOopDesc*)src, src_pos, 1746 (arrayOopDesc*)dest, dest_pos, 1747 length, thread); 1748 } 1749 JRT_END 1750 1751 char* SharedRuntime::generate_class_cast_message( 1752 JavaThread* thread, const char* objName) { 1753 1754 // Get target class name from the checkcast instruction 1755 vframeStream vfst(thread, true); 1756 assert(!vfst.at_end(), "Java frame must exist"); 1757 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1758 Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at( 1759 cc.index(), thread)); 1760 return generate_class_cast_message(objName, targetKlass->external_name()); 1761 } 1762 1763 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread, 1764 oopDesc* required, 1765 oopDesc* actual) { 1766 if (TraceMethodHandles) { 1767 tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"", 1768 thread, required, actual); 1769 } 1770 assert(EnableInvokeDynamic, ""); 1771 oop singleKlass = wrong_method_type_is_for_single_argument(thread, required); 1772 char* message = NULL; 1773 if (singleKlass != NULL) { 1774 const char* objName = "argument or return value"; 1775 if (actual != NULL) { 1776 // be flexible about the junk passed in: 1777 klassOop ak = (actual->is_klass() 1778 ? (klassOop)actual 1779 : actual->klass()); 1780 objName = Klass::cast(ak)->external_name(); 1781 } 1782 Klass* targetKlass = Klass::cast(required->is_klass() 1783 ? (klassOop)required 1784 : java_lang_Class::as_klassOop(required)); 1785 message = generate_class_cast_message(objName, targetKlass->external_name()); 1786 } else { 1787 // %%% need to get the MethodType string, without messing around too much 1788 const char* desc = NULL; 1789 // Get a signature from the invoke instruction 1790 const char* mhName = "method handle"; 1791 const char* targetType = "the required signature"; 1792 int targetArity = -1, mhArity = -1; 1793 vframeStream vfst(thread, true); 1794 if (!vfst.at_end()) { 1795 Bytecode_invoke call(vfst.method(), vfst.bci()); 1796 methodHandle target; 1797 { 1798 EXCEPTION_MARK; 1799 target = call.static_target(THREAD); 1800 if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; } 1801 } 1802 if (target.not_null() 1803 && target->is_method_handle_invoke() 1804 && required == target->method_handle_type()) { 1805 targetType = target->signature()->as_C_string(); 1806 targetArity = ArgumentCount(target->signature()).size(); 1807 } 1808 } 1809 KlassHandle kignore; int dmf_flags = 0; 1810 methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags); 1811 if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver | 1812 MethodHandles::_dmf_does_dispatch | 1813 MethodHandles::_dmf_from_interface)) != 0) 1814 actual_method = methodHandle(); // MH does extra binds, drops, etc. 1815 bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0); 1816 if (actual_method.not_null()) { 1817 mhName = actual_method->signature()->as_C_string(); 1818 mhArity = ArgumentCount(actual_method->signature()).size(); 1819 if (!actual_method->is_static()) mhArity += 1; 1820 } else if (java_lang_invoke_MethodHandle::is_instance(actual)) { 1821 oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual); 1822 mhArity = java_lang_invoke_MethodType::ptype_count(mhType); 1823 stringStream st; 1824 java_lang_invoke_MethodType::print_signature(mhType, &st); 1825 mhName = st.as_string(); 1826 } 1827 if (targetArity != -1 && targetArity != mhArity) { 1828 if (has_receiver && targetArity == mhArity-1) 1829 desc = " cannot be called without a receiver argument as "; 1830 else 1831 desc = " cannot be called with a different arity as "; 1832 } 1833 message = generate_class_cast_message(mhName, targetType, 1834 desc != NULL ? desc : 1835 " cannot be called as "); 1836 } 1837 if (TraceMethodHandles) { 1838 tty->print_cr("WrongMethodType => message=%s", message); 1839 } 1840 return message; 1841 } 1842 1843 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr, 1844 oopDesc* required) { 1845 if (required == NULL) return NULL; 1846 if (required->klass() == SystemDictionary::Class_klass()) 1847 return required; 1848 if (required->is_klass()) 1849 return Klass::cast(klassOop(required))->java_mirror(); 1850 return NULL; 1851 } 1852 1853 1854 char* SharedRuntime::generate_class_cast_message( 1855 const char* objName, const char* targetKlassName, const char* desc) { 1856 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1; 1857 1858 char* message = NEW_RESOURCE_ARRAY(char, msglen); 1859 if (NULL == message) { 1860 // Shouldn't happen, but don't cause even more problems if it does 1861 message = const_cast<char*>(objName); 1862 } else { 1863 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName); 1864 } 1865 return message; 1866 } 1867 1868 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 1869 (void) JavaThread::current()->reguard_stack(); 1870 JRT_END 1871 1872 1873 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 1874 #ifndef PRODUCT 1875 int SharedRuntime::_monitor_enter_ctr=0; 1876 #endif 1877 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread)) 1878 oop obj(_obj); 1879 #ifndef PRODUCT 1880 _monitor_enter_ctr++; // monitor enter slow 1881 #endif 1882 if (PrintBiasedLockingStatistics) { 1883 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 1884 } 1885 Handle h_obj(THREAD, obj); 1886 if (UseBiasedLocking) { 1887 // Retry fast entry if bias is revoked to avoid unnecessary inflation 1888 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK); 1889 } else { 1890 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK); 1891 } 1892 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 1893 JRT_END 1894 1895 #ifndef PRODUCT 1896 int SharedRuntime::_monitor_exit_ctr=0; 1897 #endif 1898 // Handles the uncommon cases of monitor unlocking in compiled code 1899 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock)) 1900 oop obj(_obj); 1901 #ifndef PRODUCT 1902 _monitor_exit_ctr++; // monitor exit slow 1903 #endif 1904 Thread* THREAD = JavaThread::current(); 1905 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore 1906 // testing was unable to ever fire the assert that guarded it so I have removed it. 1907 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?"); 1908 #undef MIGHT_HAVE_PENDING 1909 #ifdef MIGHT_HAVE_PENDING 1910 // Save and restore any pending_exception around the exception mark. 1911 // While the slow_exit must not throw an exception, we could come into 1912 // this routine with one set. 1913 oop pending_excep = NULL; 1914 const char* pending_file; 1915 int pending_line; 1916 if (HAS_PENDING_EXCEPTION) { 1917 pending_excep = PENDING_EXCEPTION; 1918 pending_file = THREAD->exception_file(); 1919 pending_line = THREAD->exception_line(); 1920 CLEAR_PENDING_EXCEPTION; 1921 } 1922 #endif /* MIGHT_HAVE_PENDING */ 1923 1924 { 1925 // Exit must be non-blocking, and therefore no exceptions can be thrown. 1926 EXCEPTION_MARK; 1927 ObjectSynchronizer::slow_exit(obj, lock, THREAD); 1928 } 1929 1930 #ifdef MIGHT_HAVE_PENDING 1931 if (pending_excep != NULL) { 1932 THREAD->set_pending_exception(pending_excep, pending_file, pending_line); 1933 } 1934 #endif /* MIGHT_HAVE_PENDING */ 1935 JRT_END 1936 1937 #ifndef PRODUCT 1938 1939 void SharedRuntime::print_statistics() { 1940 ttyLocker ttyl; 1941 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'"); 1942 1943 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr); 1944 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr); 1945 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr); 1946 1947 SharedRuntime::print_ic_miss_histogram(); 1948 1949 if (CountRemovableExceptions) { 1950 if (_nof_removable_exceptions > 0) { 1951 Unimplemented(); // this counter is not yet incremented 1952 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions); 1953 } 1954 } 1955 1956 // Dump the JRT_ENTRY counters 1957 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr); 1958 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr); 1959 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr); 1960 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr); 1961 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr); 1962 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr); 1963 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr); 1964 1965 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr ); 1966 tty->print_cr("%5d wrong method", _wrong_method_ctr ); 1967 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr ); 1968 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr ); 1969 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr ); 1970 1971 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr ); 1972 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr ); 1973 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr ); 1974 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr ); 1975 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr ); 1976 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr ); 1977 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr ); 1978 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr ); 1979 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr ); 1980 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr ); 1981 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr ); 1982 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr ); 1983 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr ); 1984 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr ); 1985 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr ); 1986 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr ); 1987 1988 AdapterHandlerLibrary::print_statistics(); 1989 1990 if (xtty != NULL) xtty->tail("statistics"); 1991 } 1992 1993 inline double percent(int x, int y) { 1994 return 100.0 * x / MAX2(y, 1); 1995 } 1996 1997 class MethodArityHistogram { 1998 public: 1999 enum { MAX_ARITY = 256 }; 2000 private: 2001 static int _arity_histogram[MAX_ARITY]; // histogram of #args 2002 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words 2003 static int _max_arity; // max. arity seen 2004 static int _max_size; // max. arg size seen 2005 2006 static void add_method_to_histogram(nmethod* nm) { 2007 methodOop m = nm->method(); 2008 ArgumentCount args(m->signature()); 2009 int arity = args.size() + (m->is_static() ? 0 : 1); 2010 int argsize = m->size_of_parameters(); 2011 arity = MIN2(arity, MAX_ARITY-1); 2012 argsize = MIN2(argsize, MAX_ARITY-1); 2013 int count = nm->method()->compiled_invocation_count(); 2014 _arity_histogram[arity] += count; 2015 _size_histogram[argsize] += count; 2016 _max_arity = MAX2(_max_arity, arity); 2017 _max_size = MAX2(_max_size, argsize); 2018 } 2019 2020 void print_histogram_helper(int n, int* histo, const char* name) { 2021 const int N = MIN2(5, n); 2022 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2023 double sum = 0; 2024 double weighted_sum = 0; 2025 int i; 2026 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; } 2027 double rest = sum; 2028 double percent = sum / 100; 2029 for (i = 0; i <= N; i++) { 2030 rest -= histo[i]; 2031 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent); 2032 } 2033 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent); 2034 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2035 } 2036 2037 void print_histogram() { 2038 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2039 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2040 tty->print_cr("\nSame for parameter size (in words):"); 2041 print_histogram_helper(_max_size, _size_histogram, "size"); 2042 tty->cr(); 2043 } 2044 2045 public: 2046 MethodArityHistogram() { 2047 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2048 _max_arity = _max_size = 0; 2049 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0; 2050 CodeCache::nmethods_do(add_method_to_histogram); 2051 print_histogram(); 2052 } 2053 }; 2054 2055 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2056 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2057 int MethodArityHistogram::_max_arity; 2058 int MethodArityHistogram::_max_size; 2059 2060 void SharedRuntime::print_call_statistics(int comp_total) { 2061 tty->print_cr("Calls from compiled code:"); 2062 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2063 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls; 2064 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls; 2065 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total)); 2066 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2067 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2068 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls)); 2069 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2070 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2071 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2072 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2073 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls)); 2074 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2075 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls)); 2076 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2077 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2078 tty->cr(); 2079 tty->print_cr("Note 1: counter updates are not MT-safe."); 2080 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2081 tty->print_cr(" %% in nested categories are relative to their category"); 2082 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2083 tty->cr(); 2084 2085 MethodArityHistogram h; 2086 } 2087 #endif 2088 2089 2090 // A simple wrapper class around the calling convention information 2091 // that allows sharing of adapters for the same calling convention. 2092 class AdapterFingerPrint : public CHeapObj { 2093 private: 2094 union { 2095 int _compact[3]; 2096 int* _fingerprint; 2097 } _value; 2098 int _length; // A negative length indicates the fingerprint is in the compact form, 2099 // Otherwise _value._fingerprint is the array. 2100 2101 // Remap BasicTypes that are handled equivalently by the adapters. 2102 // These are correct for the current system but someday it might be 2103 // necessary to make this mapping platform dependent. 2104 static BasicType adapter_encoding(BasicType in) { 2105 assert((~0xf & in) == 0, "must fit in 4 bits"); 2106 switch(in) { 2107 case T_BOOLEAN: 2108 case T_BYTE: 2109 case T_SHORT: 2110 case T_CHAR: 2111 // There are all promoted to T_INT in the calling convention 2112 return T_INT; 2113 2114 case T_OBJECT: 2115 case T_ARRAY: 2116 #ifdef _LP64 2117 return T_LONG; 2118 #else 2119 return T_INT; 2120 #endif 2121 2122 case T_INT: 2123 case T_LONG: 2124 case T_FLOAT: 2125 case T_DOUBLE: 2126 case T_VOID: 2127 return in; 2128 2129 default: 2130 ShouldNotReachHere(); 2131 return T_CONFLICT; 2132 } 2133 } 2134 2135 public: 2136 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2137 // The fingerprint is based on the BasicType signature encoded 2138 // into an array of ints with four entries per int. 2139 int* ptr; 2140 int len = (total_args_passed + 3) >> 2; 2141 if (len <= (int)(sizeof(_value._compact) / sizeof(int))) { 2142 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2143 // Storing the signature encoded as signed chars hits about 98% 2144 // of the time. 2145 _length = -len; 2146 ptr = _value._compact; 2147 } else { 2148 _length = len; 2149 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length); 2150 ptr = _value._fingerprint; 2151 } 2152 2153 // Now pack the BasicTypes with 4 per int 2154 int sig_index = 0; 2155 for (int index = 0; index < len; index++) { 2156 int value = 0; 2157 for (int byte = 0; byte < 4; byte++) { 2158 if (sig_index < total_args_passed) { 2159 value = (value << 4) | adapter_encoding(sig_bt[sig_index++]); 2160 } 2161 } 2162 ptr[index] = value; 2163 } 2164 } 2165 2166 ~AdapterFingerPrint() { 2167 if (_length > 0) { 2168 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2169 } 2170 } 2171 2172 int value(int index) { 2173 if (_length < 0) { 2174 return _value._compact[index]; 2175 } 2176 return _value._fingerprint[index]; 2177 } 2178 int length() { 2179 if (_length < 0) return -_length; 2180 return _length; 2181 } 2182 2183 bool is_compact() { 2184 return _length <= 0; 2185 } 2186 2187 unsigned int compute_hash() { 2188 int hash = 0; 2189 for (int i = 0; i < length(); i++) { 2190 int v = value(i); 2191 hash = (hash << 8) ^ v ^ (hash >> 5); 2192 } 2193 return (unsigned int)hash; 2194 } 2195 2196 const char* as_string() { 2197 stringStream st; 2198 for (int i = 0; i < length(); i++) { 2199 st.print(PTR_FORMAT, value(i)); 2200 } 2201 return st.as_string(); 2202 } 2203 2204 bool equals(AdapterFingerPrint* other) { 2205 if (other->_length != _length) { 2206 return false; 2207 } 2208 if (_length < 0) { 2209 return _value._compact[0] == other->_value._compact[0] && 2210 _value._compact[1] == other->_value._compact[1] && 2211 _value._compact[2] == other->_value._compact[2]; 2212 } else { 2213 for (int i = 0; i < _length; i++) { 2214 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2215 return false; 2216 } 2217 } 2218 } 2219 return true; 2220 } 2221 }; 2222 2223 2224 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2225 class AdapterHandlerTable : public BasicHashtable { 2226 friend class AdapterHandlerTableIterator; 2227 2228 private: 2229 2230 #ifndef PRODUCT 2231 static int _lookups; // number of calls to lookup 2232 static int _buckets; // number of buckets checked 2233 static int _equals; // number of buckets checked with matching hash 2234 static int _hits; // number of successful lookups 2235 static int _compact; // number of equals calls with compact signature 2236 #endif 2237 2238 AdapterHandlerEntry* bucket(int i) { 2239 return (AdapterHandlerEntry*)BasicHashtable::bucket(i); 2240 } 2241 2242 public: 2243 AdapterHandlerTable() 2244 : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { } 2245 2246 // Create a new entry suitable for insertion in the table 2247 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) { 2248 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash()); 2249 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 2250 return entry; 2251 } 2252 2253 // Insert an entry into the table 2254 void add(AdapterHandlerEntry* entry) { 2255 int index = hash_to_index(entry->hash()); 2256 add_entry(index, entry); 2257 } 2258 2259 void free_entry(AdapterHandlerEntry* entry) { 2260 entry->deallocate(); 2261 BasicHashtable::free_entry(entry); 2262 } 2263 2264 // Find a entry with the same fingerprint if it exists 2265 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { 2266 NOT_PRODUCT(_lookups++); 2267 AdapterFingerPrint fp(total_args_passed, sig_bt); 2268 unsigned int hash = fp.compute_hash(); 2269 int index = hash_to_index(hash); 2270 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2271 NOT_PRODUCT(_buckets++); 2272 if (e->hash() == hash) { 2273 NOT_PRODUCT(_equals++); 2274 if (fp.equals(e->fingerprint())) { 2275 #ifndef PRODUCT 2276 if (fp.is_compact()) _compact++; 2277 _hits++; 2278 #endif 2279 return e; 2280 } 2281 } 2282 } 2283 return NULL; 2284 } 2285 2286 #ifndef PRODUCT 2287 void print_statistics() { 2288 ResourceMark rm; 2289 int longest = 0; 2290 int empty = 0; 2291 int total = 0; 2292 int nonempty = 0; 2293 for (int index = 0; index < table_size(); index++) { 2294 int count = 0; 2295 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2296 count++; 2297 } 2298 if (count != 0) nonempty++; 2299 if (count == 0) empty++; 2300 if (count > longest) longest = count; 2301 total += count; 2302 } 2303 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f", 2304 empty, longest, total, total / (double)nonempty); 2305 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d", 2306 _lookups, _buckets, _equals, _hits, _compact); 2307 } 2308 #endif 2309 }; 2310 2311 2312 #ifndef PRODUCT 2313 2314 int AdapterHandlerTable::_lookups; 2315 int AdapterHandlerTable::_buckets; 2316 int AdapterHandlerTable::_equals; 2317 int AdapterHandlerTable::_hits; 2318 int AdapterHandlerTable::_compact; 2319 2320 #endif 2321 2322 class AdapterHandlerTableIterator : public StackObj { 2323 private: 2324 AdapterHandlerTable* _table; 2325 int _index; 2326 AdapterHandlerEntry* _current; 2327 2328 void scan() { 2329 while (_index < _table->table_size()) { 2330 AdapterHandlerEntry* a = _table->bucket(_index); 2331 _index++; 2332 if (a != NULL) { 2333 _current = a; 2334 return; 2335 } 2336 } 2337 } 2338 2339 public: 2340 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) { 2341 scan(); 2342 } 2343 bool has_next() { 2344 return _current != NULL; 2345 } 2346 AdapterHandlerEntry* next() { 2347 if (_current != NULL) { 2348 AdapterHandlerEntry* result = _current; 2349 _current = _current->next(); 2350 if (_current == NULL) scan(); 2351 return result; 2352 } else { 2353 return NULL; 2354 } 2355 } 2356 }; 2357 2358 2359 // --------------------------------------------------------------------------- 2360 // Implementation of AdapterHandlerLibrary 2361 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL; 2362 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL; 2363 const int AdapterHandlerLibrary_size = 16*K; 2364 BufferBlob* AdapterHandlerLibrary::_buffer = NULL; 2365 2366 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2367 // Should be called only when AdapterHandlerLibrary_lock is active. 2368 if (_buffer == NULL) // Initialize lazily 2369 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2370 return _buffer; 2371 } 2372 2373 void AdapterHandlerLibrary::initialize() { 2374 if (_adapters != NULL) return; 2375 _adapters = new AdapterHandlerTable(); 2376 2377 // Create a special handler for abstract methods. Abstract methods 2378 // are never compiled so an i2c entry is somewhat meaningless, but 2379 // fill it in with something appropriate just in case. Pass handle 2380 // wrong method for the c2i transitions. 2381 address wrong_method = SharedRuntime::get_handle_wrong_method_stub(); 2382 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL), 2383 StubRoutines::throw_AbstractMethodError_entry(), 2384 wrong_method, wrong_method); 2385 } 2386 2387 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2388 address i2c_entry, 2389 address c2i_entry, 2390 address c2i_unverified_entry) { 2391 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 2392 } 2393 2394 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) { 2395 // Use customized signature handler. Need to lock around updates to 2396 // the AdapterHandlerTable (it is not safe for concurrent readers 2397 // and a single writer: this could be fixed if it becomes a 2398 // problem). 2399 2400 // Get the address of the ic_miss handlers before we grab the 2401 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which 2402 // was caused by the initialization of the stubs happening 2403 // while we held the lock and then notifying jvmti while 2404 // holding it. This just forces the initialization to be a little 2405 // earlier. 2406 address ic_miss = SharedRuntime::get_ic_miss_stub(); 2407 assert(ic_miss != NULL, "must have handler"); 2408 2409 ResourceMark rm; 2410 2411 NOT_PRODUCT(int insts_size); 2412 AdapterBlob* B = NULL; 2413 AdapterHandlerEntry* entry = NULL; 2414 AdapterFingerPrint* fingerprint = NULL; 2415 { 2416 MutexLocker mu(AdapterHandlerLibrary_lock); 2417 // make sure data structure is initialized 2418 initialize(); 2419 2420 if (method->is_abstract()) { 2421 return _abstract_method_handler; 2422 } 2423 2424 // Fill in the signature array, for the calling-convention call. 2425 int total_args_passed = method->size_of_parameters(); // All args on stack 2426 2427 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2428 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2429 int i = 0; 2430 if (!method->is_static()) // Pass in receiver first 2431 sig_bt[i++] = T_OBJECT; 2432 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) { 2433 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 2434 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) 2435 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 2436 } 2437 assert(i == total_args_passed, ""); 2438 2439 // Lookup method signature's fingerprint 2440 entry = _adapters->lookup(total_args_passed, sig_bt); 2441 2442 #ifdef ASSERT 2443 AdapterHandlerEntry* shared_entry = NULL; 2444 if (VerifyAdapterSharing && entry != NULL) { 2445 shared_entry = entry; 2446 entry = NULL; 2447 } 2448 #endif 2449 2450 if (entry != NULL) { 2451 return entry; 2452 } 2453 2454 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2455 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false); 2456 2457 // Make a C heap allocated version of the fingerprint to store in the adapter 2458 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); 2459 2460 // Create I2C & C2I handlers 2461 2462 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2463 if (buf != NULL) { 2464 CodeBuffer buffer(buf); 2465 short buffer_locs[20]; 2466 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2467 sizeof(buffer_locs)/sizeof(relocInfo)); 2468 MacroAssembler _masm(&buffer); 2469 2470 entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2471 total_args_passed, 2472 comp_args_on_stack, 2473 sig_bt, 2474 regs, 2475 fingerprint); 2476 2477 #ifdef ASSERT 2478 if (VerifyAdapterSharing) { 2479 if (shared_entry != NULL) { 2480 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt), 2481 "code must match"); 2482 // Release the one just created and return the original 2483 _adapters->free_entry(entry); 2484 return shared_entry; 2485 } else { 2486 entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt); 2487 } 2488 } 2489 #endif 2490 2491 B = AdapterBlob::create(&buffer); 2492 NOT_PRODUCT(insts_size = buffer.insts_size()); 2493 } 2494 if (B == NULL) { 2495 // CodeCache is full, disable compilation 2496 // Ought to log this but compile log is only per compile thread 2497 // and we're some non descript Java thread. 2498 MutexUnlocker mu(AdapterHandlerLibrary_lock); 2499 CompileBroker::handle_full_code_cache(); 2500 return NULL; // Out of CodeCache space 2501 } 2502 entry->relocate(B->content_begin()); 2503 #ifndef PRODUCT 2504 // debugging suppport 2505 if (PrintAdapterHandlers) { 2506 tty->cr(); 2507 tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)", 2508 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"), 2509 method->signature()->as_C_string(), fingerprint->as_string(), insts_size ); 2510 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry()); 2511 Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size); 2512 } 2513 #endif 2514 2515 _adapters->add(entry); 2516 } 2517 // Outside of the lock 2518 if (B != NULL) { 2519 char blob_id[256]; 2520 jio_snprintf(blob_id, 2521 sizeof(blob_id), 2522 "%s(%s)@" PTR_FORMAT, 2523 B->name(), 2524 fingerprint->as_string(), 2525 B->content_begin()); 2526 Forte::register_stub(blob_id, B->content_begin(), B->content_end()); 2527 2528 if (JvmtiExport::should_post_dynamic_code_generated()) { 2529 JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end()); 2530 } 2531 } 2532 return entry; 2533 } 2534 2535 void AdapterHandlerEntry::relocate(address new_base) { 2536 ptrdiff_t delta = new_base - _i2c_entry; 2537 _i2c_entry += delta; 2538 _c2i_entry += delta; 2539 _c2i_unverified_entry += delta; 2540 } 2541 2542 2543 void AdapterHandlerEntry::deallocate() { 2544 delete _fingerprint; 2545 #ifdef ASSERT 2546 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 2547 if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig); 2548 #endif 2549 } 2550 2551 2552 #ifdef ASSERT 2553 // Capture the code before relocation so that it can be compared 2554 // against other versions. If the code is captured after relocation 2555 // then relative instructions won't be equivalent. 2556 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) { 2557 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length); 2558 _code_length = length; 2559 memcpy(_saved_code, buffer, length); 2560 _total_args_passed = total_args_passed; 2561 _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed); 2562 memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType)); 2563 } 2564 2565 2566 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) { 2567 if (length != _code_length) { 2568 return false; 2569 } 2570 for (int i = 0; i < length; i++) { 2571 if (buffer[i] != _saved_code[i]) { 2572 return false; 2573 } 2574 } 2575 return true; 2576 } 2577 #endif 2578 2579 2580 // Create a native wrapper for this native method. The wrapper converts the 2581 // java compiled calling convention to the native convention, handlizes 2582 // arguments, and transitions to native. On return from the native we transition 2583 // back to java blocking if a safepoint is in progress. 2584 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) { 2585 ResourceMark rm; 2586 nmethod* nm = NULL; 2587 2588 assert(method->has_native_function(), "must have something valid to call!"); 2589 2590 { 2591 // perform the work while holding the lock, but perform any printing outside the lock 2592 MutexLocker mu(AdapterHandlerLibrary_lock); 2593 // See if somebody beat us to it 2594 nm = method->code(); 2595 if (nm) { 2596 return nm; 2597 } 2598 2599 ResourceMark rm; 2600 2601 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2602 if (buf != NULL) { 2603 CodeBuffer buffer(buf); 2604 double locs_buf[20]; 2605 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 2606 MacroAssembler _masm(&buffer); 2607 2608 // Fill in the signature array, for the calling-convention call. 2609 int total_args_passed = method->size_of_parameters(); 2610 2611 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed); 2612 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed); 2613 int i=0; 2614 if( !method->is_static() ) // Pass in receiver first 2615 sig_bt[i++] = T_OBJECT; 2616 SignatureStream ss(method->signature()); 2617 for( ; !ss.at_return_type(); ss.next()) { 2618 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 2619 if( ss.type() == T_LONG || ss.type() == T_DOUBLE ) 2620 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 2621 } 2622 assert( i==total_args_passed, "" ); 2623 BasicType ret_type = ss.type(); 2624 2625 // Now get the compiled-Java layout as input arguments 2626 int comp_args_on_stack; 2627 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false); 2628 2629 // Generate the compiled-to-native wrapper code 2630 nm = SharedRuntime::generate_native_wrapper(&_masm, 2631 method, 2632 compile_id, 2633 total_args_passed, 2634 comp_args_on_stack, 2635 sig_bt,regs, 2636 ret_type); 2637 } 2638 } 2639 2640 // Must unlock before calling set_code 2641 2642 // Install the generated code. 2643 if (nm != NULL) { 2644 if (PrintCompilation) { 2645 ttyLocker ttyl; 2646 CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : ""); 2647 } 2648 method->set_code(method, nm); 2649 nm->post_compiled_method_load_event(); 2650 } else { 2651 // CodeCache is full, disable compilation 2652 CompileBroker::handle_full_code_cache(); 2653 } 2654 return nm; 2655 } 2656 2657 #ifdef HAVE_DTRACE_H 2658 // Create a dtrace nmethod for this method. The wrapper converts the 2659 // java compiled calling convention to the native convention, makes a dummy call 2660 // (actually nops for the size of the call instruction, which become a trap if 2661 // probe is enabled). The returns to the caller. Since this all looks like a 2662 // leaf no thread transition is needed. 2663 2664 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) { 2665 ResourceMark rm; 2666 nmethod* nm = NULL; 2667 2668 if (PrintCompilation) { 2669 ttyLocker ttyl; 2670 tty->print("--- n%s "); 2671 method->print_short_name(tty); 2672 if (method->is_static()) { 2673 tty->print(" (static)"); 2674 } 2675 tty->cr(); 2676 } 2677 2678 { 2679 // perform the work while holding the lock, but perform any printing 2680 // outside the lock 2681 MutexLocker mu(AdapterHandlerLibrary_lock); 2682 // See if somebody beat us to it 2683 nm = method->code(); 2684 if (nm) { 2685 return nm; 2686 } 2687 2688 ResourceMark rm; 2689 2690 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2691 if (buf != NULL) { 2692 CodeBuffer buffer(buf); 2693 // Need a few relocation entries 2694 double locs_buf[20]; 2695 buffer.insts()->initialize_shared_locs( 2696 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 2697 MacroAssembler _masm(&buffer); 2698 2699 // Generate the compiled-to-native wrapper code 2700 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method); 2701 } 2702 } 2703 return nm; 2704 } 2705 2706 // the dtrace method needs to convert java lang string to utf8 string. 2707 void SharedRuntime::get_utf(oopDesc* src, address dst) { 2708 typeArrayOop jlsValue = java_lang_String::value(src); 2709 int jlsOffset = java_lang_String::offset(src); 2710 int jlsLen = java_lang_String::length(src); 2711 jchar* jlsPos = (jlsLen == 0) ? NULL : 2712 jlsValue->char_at_addr(jlsOffset); 2713 assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string"); 2714 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size); 2715 } 2716 #endif // ndef HAVE_DTRACE_H 2717 2718 // ------------------------------------------------------------------------- 2719 // Java-Java calling convention 2720 // (what you use when Java calls Java) 2721 2722 //------------------------------name_for_receiver---------------------------------- 2723 // For a given signature, return the VMReg for parameter 0. 2724 VMReg SharedRuntime::name_for_receiver() { 2725 VMRegPair regs; 2726 BasicType sig_bt = T_OBJECT; 2727 (void) java_calling_convention(&sig_bt, ®s, 1, true); 2728 // Return argument 0 register. In the LP64 build pointers 2729 // take 2 registers, but the VM wants only the 'main' name. 2730 return regs.first(); 2731 } 2732 2733 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) { 2734 // This method is returning a data structure allocating as a 2735 // ResourceObject, so do not put any ResourceMarks in here. 2736 char *s = sig->as_C_string(); 2737 int len = (int)strlen(s); 2738 *s++; len--; // Skip opening paren 2739 char *t = s+len; 2740 while( *(--t) != ')' ) ; // Find close paren 2741 2742 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 ); 2743 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 ); 2744 int cnt = 0; 2745 if (has_receiver) { 2746 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 2747 } 2748 2749 while( s < t ) { 2750 switch( *s++ ) { // Switch on signature character 2751 case 'B': sig_bt[cnt++] = T_BYTE; break; 2752 case 'C': sig_bt[cnt++] = T_CHAR; break; 2753 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break; 2754 case 'F': sig_bt[cnt++] = T_FLOAT; break; 2755 case 'I': sig_bt[cnt++] = T_INT; break; 2756 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break; 2757 case 'S': sig_bt[cnt++] = T_SHORT; break; 2758 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break; 2759 case 'V': sig_bt[cnt++] = T_VOID; break; 2760 case 'L': // Oop 2761 while( *s++ != ';' ) ; // Skip signature 2762 sig_bt[cnt++] = T_OBJECT; 2763 break; 2764 case '[': { // Array 2765 do { // Skip optional size 2766 while( *s >= '0' && *s <= '9' ) s++; 2767 } while( *s++ == '[' ); // Nested arrays? 2768 // Skip element type 2769 if( s[-1] == 'L' ) 2770 while( *s++ != ';' ) ; // Skip signature 2771 sig_bt[cnt++] = T_ARRAY; 2772 break; 2773 } 2774 default : ShouldNotReachHere(); 2775 } 2776 } 2777 assert( cnt < 256, "grow table size" ); 2778 2779 int comp_args_on_stack; 2780 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true); 2781 2782 // the calling convention doesn't count out_preserve_stack_slots so 2783 // we must add that in to get "true" stack offsets. 2784 2785 if (comp_args_on_stack) { 2786 for (int i = 0; i < cnt; i++) { 2787 VMReg reg1 = regs[i].first(); 2788 if( reg1->is_stack()) { 2789 // Yuck 2790 reg1 = reg1->bias(out_preserve_stack_slots()); 2791 } 2792 VMReg reg2 = regs[i].second(); 2793 if( reg2->is_stack()) { 2794 // Yuck 2795 reg2 = reg2->bias(out_preserve_stack_slots()); 2796 } 2797 regs[i].set_pair(reg2, reg1); 2798 } 2799 } 2800 2801 // results 2802 *arg_size = cnt; 2803 return regs; 2804 } 2805 2806 // OSR Migration Code 2807 // 2808 // This code is used convert interpreter frames into compiled frames. It is 2809 // called from very start of a compiled OSR nmethod. A temp array is 2810 // allocated to hold the interesting bits of the interpreter frame. All 2811 // active locks are inflated to allow them to move. The displaced headers and 2812 // active interpeter locals are copied into the temp buffer. Then we return 2813 // back to the compiled code. The compiled code then pops the current 2814 // interpreter frame off the stack and pushes a new compiled frame. Then it 2815 // copies the interpreter locals and displaced headers where it wants. 2816 // Finally it calls back to free the temp buffer. 2817 // 2818 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 2819 2820 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) ) 2821 2822 #ifdef IA64 2823 ShouldNotReachHere(); // NYI 2824 #endif /* IA64 */ 2825 2826 // 2827 // This code is dependent on the memory layout of the interpreter local 2828 // array and the monitors. On all of our platforms the layout is identical 2829 // so this code is shared. If some platform lays the their arrays out 2830 // differently then this code could move to platform specific code or 2831 // the code here could be modified to copy items one at a time using 2832 // frame accessor methods and be platform independent. 2833 2834 frame fr = thread->last_frame(); 2835 assert( fr.is_interpreted_frame(), "" ); 2836 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" ); 2837 2838 // Figure out how many monitors are active. 2839 int active_monitor_count = 0; 2840 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 2841 kptr < fr.interpreter_frame_monitor_begin(); 2842 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 2843 if( kptr->obj() != NULL ) active_monitor_count++; 2844 } 2845 2846 // QQQ we could place number of active monitors in the array so that compiled code 2847 // could double check it. 2848 2849 methodOop moop = fr.interpreter_frame_method(); 2850 int max_locals = moop->max_locals(); 2851 // Allocate temp buffer, 1 word per local & 2 per active monitor 2852 int buf_size_words = max_locals + active_monitor_count*2; 2853 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words); 2854 2855 // Copy the locals. Order is preserved so that loading of longs works. 2856 // Since there's no GC I can copy the oops blindly. 2857 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 2858 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 2859 (HeapWord*)&buf[0], 2860 max_locals); 2861 2862 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 2863 int i = max_locals; 2864 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 2865 kptr2 < fr.interpreter_frame_monitor_begin(); 2866 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 2867 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array 2868 BasicLock *lock = kptr2->lock(); 2869 // Inflate so the displaced header becomes position-independent 2870 if (lock->displaced_header()->is_unlocked()) 2871 ObjectSynchronizer::inflate_helper(kptr2->obj()); 2872 // Now the displaced header is free to move 2873 buf[i++] = (intptr_t)lock->displaced_header(); 2874 buf[i++] = (intptr_t)kptr2->obj(); 2875 } 2876 } 2877 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" ); 2878 2879 return buf; 2880 JRT_END 2881 2882 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 2883 FREE_C_HEAP_ARRAY(intptr_t,buf); 2884 JRT_END 2885 2886 bool AdapterHandlerLibrary::contains(CodeBlob* b) { 2887 AdapterHandlerTableIterator iter(_adapters); 2888 while (iter.has_next()) { 2889 AdapterHandlerEntry* a = iter.next(); 2890 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true; 2891 } 2892 return false; 2893 } 2894 2895 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) { 2896 AdapterHandlerTableIterator iter(_adapters); 2897 while (iter.has_next()) { 2898 AdapterHandlerEntry* a = iter.next(); 2899 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) { 2900 st->print("Adapter for signature: "); 2901 st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT, 2902 a->fingerprint()->as_string(), 2903 a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry()); 2904 2905 return; 2906 } 2907 } 2908 assert(false, "Should have found handler"); 2909 } 2910 2911 #ifndef PRODUCT 2912 2913 void AdapterHandlerLibrary::print_statistics() { 2914 _adapters->print_statistics(); 2915 } 2916 2917 #endif /* PRODUCT */