1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/interpreterRuntime.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/forte.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiRedefineClassesTrace.hpp"
  42 #include "prims/methodHandles.hpp"
  43 #include "prims/nativeLookup.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/vframe.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "utilities/copy.hpp"
  55 #include "utilities/dtrace.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/hashtable.inline.hpp"
  58 #include "utilities/xmlstream.hpp"
  59 #ifdef TARGET_ARCH_x86
  60 # include "nativeInst_x86.hpp"
  61 # include "vmreg_x86.inline.hpp"
  62 #endif
  63 #ifdef TARGET_ARCH_sparc
  64 # include "nativeInst_sparc.hpp"
  65 # include "vmreg_sparc.inline.hpp"
  66 #endif
  67 #ifdef TARGET_ARCH_zero
  68 # include "nativeInst_zero.hpp"
  69 # include "vmreg_zero.inline.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_arm
  72 # include "nativeInst_arm.hpp"
  73 # include "vmreg_arm.inline.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_ppc
  76 # include "nativeInst_ppc.hpp"
  77 # include "vmreg_ppc.inline.hpp"
  78 #endif
  79 #ifdef COMPILER1
  80 #include "c1/c1_Runtime1.hpp"
  81 #endif
  82 
  83 // Shared stub locations
  84 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  85 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  89 
  90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  91 RicochetBlob*       SharedRuntime::_ricochet_blob;
  92 
  93 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  95 
  96 #ifdef COMPILER2
  97 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  98 #endif // COMPILER2
  99 
 100 
 101 //----------------------------generate_stubs-----------------------------------
 102 void SharedRuntime::generate_stubs() {
 103   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
 104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
 105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
 106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
 107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
 108 
 109   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false);
 110   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true);
 111 
 112   generate_ricochet_blob();
 113   generate_deopt_blob();
 114 
 115 #ifdef COMPILER2
 116   generate_uncommon_trap_blob();
 117 #endif // COMPILER2
 118 }
 119 
 120 //----------------------------generate_ricochet_blob---------------------------
 121 void SharedRuntime::generate_ricochet_blob() {
 122   if (!EnableInvokeDynamic)  return;  // leave it as a null
 123 
 124 #ifndef TARGET_ARCH_NYI_6939861
 125   // allocate space for the code
 126   ResourceMark rm;
 127   // setup code generation tools
 128   CodeBuffer buffer("ricochet_blob", 256 LP64_ONLY(+ 256), 256);  // XXX x86 LP64L: 512, 512
 129   MacroAssembler* masm = new MacroAssembler(&buffer);
 130 
 131   int bounce_offset = -1, exception_offset = -1, frame_size_in_words = -1;
 132   MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &bounce_offset, &exception_offset, &frame_size_in_words);
 133 
 134   // -------------
 135   // make sure all code is generated
 136   masm->flush();
 137 
 138   // failed to generate?
 139   if (bounce_offset < 0 || exception_offset < 0 || frame_size_in_words < 0) {
 140     assert(false, "bad ricochet blob");
 141     return;
 142   }
 143 
 144   _ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
 145 #endif
 146 }
 147 
 148 
 149 #include <math.h>
 150 
 151 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 152 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 153                       char*, int, char*, int, char*, int);
 154 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 155                       char*, int, char*, int, char*, int);
 156 
 157 // Implementation of SharedRuntime
 158 
 159 #ifndef PRODUCT
 160 // For statistics
 161 int SharedRuntime::_ic_miss_ctr = 0;
 162 int SharedRuntime::_wrong_method_ctr = 0;
 163 int SharedRuntime::_resolve_static_ctr = 0;
 164 int SharedRuntime::_resolve_virtual_ctr = 0;
 165 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 166 int SharedRuntime::_implicit_null_throws = 0;
 167 int SharedRuntime::_implicit_div0_throws = 0;
 168 int SharedRuntime::_throw_null_ctr = 0;
 169 
 170 int SharedRuntime::_nof_normal_calls = 0;
 171 int SharedRuntime::_nof_optimized_calls = 0;
 172 int SharedRuntime::_nof_inlined_calls = 0;
 173 int SharedRuntime::_nof_megamorphic_calls = 0;
 174 int SharedRuntime::_nof_static_calls = 0;
 175 int SharedRuntime::_nof_inlined_static_calls = 0;
 176 int SharedRuntime::_nof_interface_calls = 0;
 177 int SharedRuntime::_nof_optimized_interface_calls = 0;
 178 int SharedRuntime::_nof_inlined_interface_calls = 0;
 179 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 180 int SharedRuntime::_nof_removable_exceptions = 0;
 181 
 182 int SharedRuntime::_new_instance_ctr=0;
 183 int SharedRuntime::_new_array_ctr=0;
 184 int SharedRuntime::_multi1_ctr=0;
 185 int SharedRuntime::_multi2_ctr=0;
 186 int SharedRuntime::_multi3_ctr=0;
 187 int SharedRuntime::_multi4_ctr=0;
 188 int SharedRuntime::_multi5_ctr=0;
 189 int SharedRuntime::_mon_enter_stub_ctr=0;
 190 int SharedRuntime::_mon_exit_stub_ctr=0;
 191 int SharedRuntime::_mon_enter_ctr=0;
 192 int SharedRuntime::_mon_exit_ctr=0;
 193 int SharedRuntime::_partial_subtype_ctr=0;
 194 int SharedRuntime::_jbyte_array_copy_ctr=0;
 195 int SharedRuntime::_jshort_array_copy_ctr=0;
 196 int SharedRuntime::_jint_array_copy_ctr=0;
 197 int SharedRuntime::_jlong_array_copy_ctr=0;
 198 int SharedRuntime::_oop_array_copy_ctr=0;
 199 int SharedRuntime::_checkcast_array_copy_ctr=0;
 200 int SharedRuntime::_unsafe_array_copy_ctr=0;
 201 int SharedRuntime::_generic_array_copy_ctr=0;
 202 int SharedRuntime::_slow_array_copy_ctr=0;
 203 int SharedRuntime::_find_handler_ctr=0;
 204 int SharedRuntime::_rethrow_ctr=0;
 205 
 206 int     SharedRuntime::_ICmiss_index                    = 0;
 207 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 208 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 209 
 210 
 211 void SharedRuntime::trace_ic_miss(address at) {
 212   for (int i = 0; i < _ICmiss_index; i++) {
 213     if (_ICmiss_at[i] == at) {
 214       _ICmiss_count[i]++;
 215       return;
 216     }
 217   }
 218   int index = _ICmiss_index++;
 219   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 220   _ICmiss_at[index] = at;
 221   _ICmiss_count[index] = 1;
 222 }
 223 
 224 void SharedRuntime::print_ic_miss_histogram() {
 225   if (ICMissHistogram) {
 226     tty->print_cr ("IC Miss Histogram:");
 227     int tot_misses = 0;
 228     for (int i = 0; i < _ICmiss_index; i++) {
 229       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 230       tot_misses += _ICmiss_count[i];
 231     }
 232     tty->print_cr ("Total IC misses: %7d", tot_misses);
 233   }
 234 }
 235 #endif // PRODUCT
 236 
 237 #ifndef SERIALGC
 238 
 239 // G1 write-barrier pre: executed before a pointer store.
 240 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 241   if (orig == NULL) {
 242     assert(false, "should be optimized out");
 243     return;
 244   }
 245   assert(orig->is_oop(true /* ignore mark word */), "Error");
 246   // store the original value that was in the field reference
 247   thread->satb_mark_queue().enqueue(orig);
 248 JRT_END
 249 
 250 // G1 write-barrier post: executed after a pointer store.
 251 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 252   thread->dirty_card_queue().enqueue(card_addr);
 253 JRT_END
 254 
 255 #endif // !SERIALGC
 256 
 257 
 258 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 259   return x * y;
 260 JRT_END
 261 
 262 
 263 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 264   if (x == min_jlong && y == CONST64(-1)) {
 265     return x;
 266   } else {
 267     return x / y;
 268   }
 269 JRT_END
 270 
 271 
 272 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 273   if (x == min_jlong && y == CONST64(-1)) {
 274     return 0;
 275   } else {
 276     return x % y;
 277   }
 278 JRT_END
 279 
 280 
 281 const juint  float_sign_mask  = 0x7FFFFFFF;
 282 const juint  float_infinity   = 0x7F800000;
 283 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 284 const julong double_infinity  = CONST64(0x7FF0000000000000);
 285 
 286 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 287 #ifdef _WIN64
 288   // 64-bit Windows on amd64 returns the wrong values for
 289   // infinity operands.
 290   union { jfloat f; juint i; } xbits, ybits;
 291   xbits.f = x;
 292   ybits.f = y;
 293   // x Mod Infinity == x unless x is infinity
 294   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 295        ((ybits.i & float_sign_mask) == float_infinity) ) {
 296     return x;
 297   }
 298 #endif
 299   return ((jfloat)fmod((double)x,(double)y));
 300 JRT_END
 301 
 302 
 303 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 304 #ifdef _WIN64
 305   union { jdouble d; julong l; } xbits, ybits;
 306   xbits.d = x;
 307   ybits.d = y;
 308   // x Mod Infinity == x unless x is infinity
 309   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 310        ((ybits.l & double_sign_mask) == double_infinity) ) {
 311     return x;
 312   }
 313 #endif
 314   return ((jdouble)fmod((double)x,(double)y));
 315 JRT_END
 316 
 317 #ifdef __SOFTFP__
 318 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 319   return x + y;
 320 JRT_END
 321 
 322 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 323   return x - y;
 324 JRT_END
 325 
 326 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 327   return x * y;
 328 JRT_END
 329 
 330 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 331   return x / y;
 332 JRT_END
 333 
 334 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 335   return x + y;
 336 JRT_END
 337 
 338 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 339   return x - y;
 340 JRT_END
 341 
 342 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 343   return x * y;
 344 JRT_END
 345 
 346 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 347   return x / y;
 348 JRT_END
 349 
 350 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 351   return (jfloat)x;
 352 JRT_END
 353 
 354 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 355   return (jdouble)x;
 356 JRT_END
 357 
 358 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 359   return (jdouble)x;
 360 JRT_END
 361 
 362 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 363   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 364 JRT_END
 365 
 366 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 367   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 368 JRT_END
 369 
 370 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 371   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 372 JRT_END
 373 
 374 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 375   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 376 JRT_END
 377 
 378 // Functions to return the opposite of the aeabi functions for nan.
 379 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 380   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 381 JRT_END
 382 
 383 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 384   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 385 JRT_END
 386 
 387 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 388   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 389 JRT_END
 390 
 391 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 392   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 393 JRT_END
 394 
 395 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 396   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 397 JRT_END
 398 
 399 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 400   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 401 JRT_END
 402 
 403 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 404   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 405 JRT_END
 406 
 407 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 408   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 409 JRT_END
 410 
 411 // Intrinsics make gcc generate code for these.
 412 float  SharedRuntime::fneg(float f)   {
 413   return -f;
 414 }
 415 
 416 double SharedRuntime::dneg(double f)  {
 417   return -f;
 418 }
 419 
 420 #endif // __SOFTFP__
 421 
 422 #if defined(__SOFTFP__) || defined(E500V2)
 423 // Intrinsics make gcc generate code for these.
 424 double SharedRuntime::dabs(double f)  {
 425   return (f <= (double)0.0) ? (double)0.0 - f : f;
 426 }
 427 
 428 #endif
 429 
 430 #if defined(__SOFTFP__) || defined(PPC)
 431 double SharedRuntime::dsqrt(double f) {
 432   return sqrt(f);
 433 }
 434 #endif
 435 
 436 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 437   if (g_isnan(x))
 438     return 0;
 439   if (x >= (jfloat) max_jint)
 440     return max_jint;
 441   if (x <= (jfloat) min_jint)
 442     return min_jint;
 443   return (jint) x;
 444 JRT_END
 445 
 446 
 447 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 448   if (g_isnan(x))
 449     return 0;
 450   if (x >= (jfloat) max_jlong)
 451     return max_jlong;
 452   if (x <= (jfloat) min_jlong)
 453     return min_jlong;
 454   return (jlong) x;
 455 JRT_END
 456 
 457 
 458 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 459   if (g_isnan(x))
 460     return 0;
 461   if (x >= (jdouble) max_jint)
 462     return max_jint;
 463   if (x <= (jdouble) min_jint)
 464     return min_jint;
 465   return (jint) x;
 466 JRT_END
 467 
 468 
 469 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 470   if (g_isnan(x))
 471     return 0;
 472   if (x >= (jdouble) max_jlong)
 473     return max_jlong;
 474   if (x <= (jdouble) min_jlong)
 475     return min_jlong;
 476   return (jlong) x;
 477 JRT_END
 478 
 479 
 480 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 481   return (jfloat)x;
 482 JRT_END
 483 
 484 
 485 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 486   return (jfloat)x;
 487 JRT_END
 488 
 489 
 490 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 491   return (jdouble)x;
 492 JRT_END
 493 
 494 // Exception handling accross interpreter/compiler boundaries
 495 //
 496 // exception_handler_for_return_address(...) returns the continuation address.
 497 // The continuation address is the entry point of the exception handler of the
 498 // previous frame depending on the return address.
 499 
 500 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 501   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 502 
 503   // Reset method handle flag.
 504   thread->set_is_method_handle_return(false);
 505 
 506   // The fastest case first
 507   CodeBlob* blob = CodeCache::find_blob(return_address);
 508   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 509   if (nm != NULL) {
 510     // Set flag if return address is a method handle call site.
 511     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 512     // native nmethods don't have exception handlers
 513     assert(!nm->is_native_method(), "no exception handler");
 514     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 515     if (nm->is_deopt_pc(return_address)) {
 516       return SharedRuntime::deopt_blob()->unpack_with_exception();
 517     } else {
 518       return nm->exception_begin();
 519     }
 520   }
 521 
 522   // Entry code
 523   if (StubRoutines::returns_to_call_stub(return_address)) {
 524     return StubRoutines::catch_exception_entry();
 525   }
 526   // Interpreted code
 527   if (Interpreter::contains(return_address)) {
 528     return Interpreter::rethrow_exception_entry();
 529   }
 530   // Ricochet frame unwind code
 531   if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) {
 532     return SharedRuntime::ricochet_blob()->exception_addr();
 533   }
 534 
 535   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 536   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 537 
 538 #ifndef PRODUCT
 539   { ResourceMark rm;
 540     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 541     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 542     tty->print_cr("b) other problem");
 543   }
 544 #endif // PRODUCT
 545 
 546   ShouldNotReachHere();
 547   return NULL;
 548 }
 549 
 550 
 551 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 552   return raw_exception_handler_for_return_address(thread, return_address);
 553 JRT_END
 554 
 555 
 556 address SharedRuntime::get_poll_stub(address pc) {
 557   address stub;
 558   // Look up the code blob
 559   CodeBlob *cb = CodeCache::find_blob(pc);
 560 
 561   // Should be an nmethod
 562   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 563 
 564   // Look up the relocation information
 565   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 566     "safepoint polling: type must be poll" );
 567 
 568   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 569     "Only polling locations are used for safepoint");
 570 
 571   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 572   if (at_poll_return) {
 573     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 574            "polling page return stub not created yet");
 575     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 576   } else {
 577     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 578            "polling page safepoint stub not created yet");
 579     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 580   }
 581 #ifndef PRODUCT
 582   if( TraceSafepoint ) {
 583     char buf[256];
 584     jio_snprintf(buf, sizeof(buf),
 585                  "... found polling page %s exception at pc = "
 586                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 587                  at_poll_return ? "return" : "loop",
 588                  (intptr_t)pc, (intptr_t)stub);
 589     tty->print_raw_cr(buf);
 590   }
 591 #endif // PRODUCT
 592   return stub;
 593 }
 594 
 595 
 596 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 597   assert(caller.is_interpreted_frame(), "");
 598   int args_size = ArgumentSizeComputer(sig).size() + 1;
 599   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 600   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 601   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 602   return result;
 603 }
 604 
 605 
 606 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 607   if (JvmtiExport::can_post_on_exceptions()) {
 608     vframeStream vfst(thread, true);
 609     methodHandle method = methodHandle(thread, vfst.method());
 610     address bcp = method()->bcp_from(vfst.bci());
 611     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 612   }
 613   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 614 }
 615 
 616 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 617   Handle h_exception = Exceptions::new_exception(thread, name, message);
 618   throw_and_post_jvmti_exception(thread, h_exception);
 619 }
 620 
 621 // The interpreter code to call this tracing function is only
 622 // called/generated when TraceRedefineClasses has the right bits
 623 // set. Since obsolete methods are never compiled, we don't have
 624 // to modify the compilers to generate calls to this function.
 625 //
 626 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 627     JavaThread* thread, methodOopDesc* method))
 628   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 629 
 630   if (method->is_obsolete()) {
 631     // We are calling an obsolete method, but this is not necessarily
 632     // an error. Our method could have been redefined just after we
 633     // fetched the methodOop from the constant pool.
 634 
 635     // RC_TRACE macro has an embedded ResourceMark
 636     RC_TRACE_WITH_THREAD(0x00001000, thread,
 637                          ("calling obsolete method '%s'",
 638                           method->name_and_sig_as_C_string()));
 639     if (RC_TRACE_ENABLED(0x00002000)) {
 640       // this option is provided to debug calls to obsolete methods
 641       guarantee(false, "faulting at call to an obsolete method.");
 642     }
 643   }
 644   return 0;
 645 JRT_END
 646 
 647 // ret_pc points into caller; we are returning caller's exception handler
 648 // for given exception
 649 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 650                                                     bool force_unwind, bool top_frame_only) {
 651   assert(nm != NULL, "must exist");
 652   ResourceMark rm;
 653 
 654   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 655   // determine handler bci, if any
 656   EXCEPTION_MARK;
 657 
 658   int handler_bci = -1;
 659   int scope_depth = 0;
 660   if (!force_unwind) {
 661     int bci = sd->bci();
 662     bool recursive_exception = false;
 663     do {
 664       bool skip_scope_increment = false;
 665       // exception handler lookup
 666       KlassHandle ek (THREAD, exception->klass());
 667       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
 668       if (HAS_PENDING_EXCEPTION) {
 669         recursive_exception = true;
 670         // We threw an exception while trying to find the exception handler.
 671         // Transfer the new exception to the exception handle which will
 672         // be set into thread local storage, and do another lookup for an
 673         // exception handler for this exception, this time starting at the
 674         // BCI of the exception handler which caused the exception to be
 675         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 676         // argument to ensure that the correct exception is thrown (4870175).
 677         exception = Handle(THREAD, PENDING_EXCEPTION);
 678         CLEAR_PENDING_EXCEPTION;
 679         if (handler_bci >= 0) {
 680           bci = handler_bci;
 681           handler_bci = -1;
 682           skip_scope_increment = true;
 683         }
 684       }
 685       else {
 686         recursive_exception = false;
 687       }
 688       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 689         sd = sd->sender();
 690         if (sd != NULL) {
 691           bci = sd->bci();
 692         }
 693         ++scope_depth;
 694       }
 695     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 696   }
 697 
 698   // found handling method => lookup exception handler
 699   int catch_pco = ret_pc - nm->code_begin();
 700 
 701   ExceptionHandlerTable table(nm);
 702   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 703   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 704     // Allow abbreviated catch tables.  The idea is to allow a method
 705     // to materialize its exceptions without committing to the exact
 706     // routing of exceptions.  In particular this is needed for adding
 707     // a synthethic handler to unlock monitors when inlining
 708     // synchonized methods since the unlock path isn't represented in
 709     // the bytecodes.
 710     t = table.entry_for(catch_pco, -1, 0);
 711   }
 712 
 713 #ifdef COMPILER1
 714   if (t == NULL && nm->is_compiled_by_c1()) {
 715     assert(nm->unwind_handler_begin() != NULL, "");
 716     return nm->unwind_handler_begin();
 717   }
 718 #endif
 719 
 720   if (t == NULL) {
 721     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 722     tty->print_cr("   Exception:");
 723     exception->print();
 724     tty->cr();
 725     tty->print_cr(" Compiled exception table :");
 726     table.print();
 727     nm->print_code();
 728     guarantee(false, "missing exception handler");
 729     return NULL;
 730   }
 731 
 732   return nm->code_begin() + t->pco();
 733 }
 734 
 735 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 736   // These errors occur only at call sites
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 741   // These errors occur only at call sites
 742   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 743 JRT_END
 744 
 745 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 746   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 747 JRT_END
 748 
 749 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 750   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 754   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 755   // cache sites (when the callee activation is not yet set up) so we are at a call site
 756   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 757 JRT_END
 758 
 759 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 760   // We avoid using the normal exception construction in this case because
 761   // it performs an upcall to Java, and we're already out of stack space.
 762   klassOop k = SystemDictionary::StackOverflowError_klass();
 763   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
 764   Handle exception (thread, exception_oop);
 765   if (StackTraceInThrowable) {
 766     java_lang_Throwable::fill_in_stack_trace(exception);
 767   }
 768   throw_and_post_jvmti_exception(thread, exception);
 769 JRT_END
 770 
 771 JRT_ENTRY(void, SharedRuntime::throw_WrongMethodTypeException(JavaThread* thread, oopDesc* required, oopDesc* actual))
 772   assert(thread == JavaThread::current() && required->is_oop() && actual->is_oop(), "bad args");
 773   ResourceMark rm;
 774   char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual);
 775   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_invoke_WrongMethodTypeException(), message);
 776 JRT_END
 777 
 778 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 779                                                            address pc,
 780                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 781 {
 782   address target_pc = NULL;
 783 
 784   if (Interpreter::contains(pc)) {
 785 #ifdef CC_INTERP
 786     // C++ interpreter doesn't throw implicit exceptions
 787     ShouldNotReachHere();
 788 #else
 789     switch (exception_kind) {
 790       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 791       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 792       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 793       default:                      ShouldNotReachHere();
 794     }
 795 #endif // !CC_INTERP
 796   } else {
 797     switch (exception_kind) {
 798       case STACK_OVERFLOW: {
 799         // Stack overflow only occurs upon frame setup; the callee is
 800         // going to be unwound. Dispatch to a shared runtime stub
 801         // which will cause the StackOverflowError to be fabricated
 802         // and processed.
 803         // For stack overflow in deoptimization blob, cleanup thread.
 804         if (thread->deopt_mark() != NULL) {
 805           Deoptimization::cleanup_deopt_info(thread, NULL);
 806         }
 807         return StubRoutines::throw_StackOverflowError_entry();
 808       }
 809 
 810       case IMPLICIT_NULL: {
 811         if (VtableStubs::contains(pc)) {
 812           // We haven't yet entered the callee frame. Fabricate an
 813           // exception and begin dispatching it in the caller. Since
 814           // the caller was at a call site, it's safe to destroy all
 815           // caller-saved registers, as these entry points do.
 816           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 817 
 818           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 819           if (vt_stub == NULL) return NULL;
 820 
 821           if (vt_stub->is_abstract_method_error(pc)) {
 822             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 823             return StubRoutines::throw_AbstractMethodError_entry();
 824           } else {
 825             return StubRoutines::throw_NullPointerException_at_call_entry();
 826           }
 827         } else {
 828           CodeBlob* cb = CodeCache::find_blob(pc);
 829 
 830           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 831           if (cb == NULL) return NULL;
 832 
 833           // Exception happened in CodeCache. Must be either:
 834           // 1. Inline-cache check in C2I handler blob,
 835           // 2. Inline-cache check in nmethod, or
 836           // 3. Implict null exception in nmethod
 837 
 838           if (!cb->is_nmethod()) {
 839             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
 840                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 841             // There is no handler here, so we will simply unwind.
 842             return StubRoutines::throw_NullPointerException_at_call_entry();
 843           }
 844 
 845           // Otherwise, it's an nmethod.  Consult its exception handlers.
 846           nmethod* nm = (nmethod*)cb;
 847           if (nm->inlinecache_check_contains(pc)) {
 848             // exception happened inside inline-cache check code
 849             // => the nmethod is not yet active (i.e., the frame
 850             // is not set up yet) => use return address pushed by
 851             // caller => don't push another return address
 852             return StubRoutines::throw_NullPointerException_at_call_entry();
 853           }
 854 
 855 #ifndef PRODUCT
 856           _implicit_null_throws++;
 857 #endif
 858           target_pc = nm->continuation_for_implicit_exception(pc);
 859           // If there's an unexpected fault, target_pc might be NULL,
 860           // in which case we want to fall through into the normal
 861           // error handling code.
 862         }
 863 
 864         break; // fall through
 865       }
 866 
 867 
 868       case IMPLICIT_DIVIDE_BY_ZERO: {
 869         nmethod* nm = CodeCache::find_nmethod(pc);
 870         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 871 #ifndef PRODUCT
 872         _implicit_div0_throws++;
 873 #endif
 874         target_pc = nm->continuation_for_implicit_exception(pc);
 875         // If there's an unexpected fault, target_pc might be NULL,
 876         // in which case we want to fall through into the normal
 877         // error handling code.
 878         break; // fall through
 879       }
 880 
 881       default: ShouldNotReachHere();
 882     }
 883 
 884     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 885 
 886     // for AbortVMOnException flag
 887     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 888     if (exception_kind == IMPLICIT_NULL) {
 889       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 890     } else {
 891       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 892     }
 893     return target_pc;
 894   }
 895 
 896   ShouldNotReachHere();
 897   return NULL;
 898 }
 899 
 900 
 901 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 902 {
 903   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 904 }
 905 JNI_END
 906 
 907 
 908 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 909   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 910 }
 911 
 912 
 913 #ifndef PRODUCT
 914 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 915   const frame f = thread->last_frame();
 916   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 917 #ifndef PRODUCT
 918   methodHandle mh(THREAD, f.interpreter_frame_method());
 919   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 920 #endif // !PRODUCT
 921   return preserve_this_value;
 922 JRT_END
 923 #endif // !PRODUCT
 924 
 925 
 926 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 927   os::yield_all(attempts);
 928 JRT_END
 929 
 930 
 931 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 932   assert(obj->is_oop(), "must be a valid oop");
 933   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 934   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 935 JRT_END
 936 
 937 
 938 jlong SharedRuntime::get_java_tid(Thread* thread) {
 939   if (thread != NULL) {
 940     if (thread->is_Java_thread()) {
 941       oop obj = ((JavaThread*)thread)->threadObj();
 942       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 943     }
 944   }
 945   return 0;
 946 }
 947 
 948 /**
 949  * This function ought to be a void function, but cannot be because
 950  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 951  * 6254741.  Once that is fixed we can remove the dummy return value.
 952  */
 953 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 954   return dtrace_object_alloc_base(Thread::current(), o);
 955 }
 956 
 957 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 958   assert(DTraceAllocProbes, "wrong call");
 959   Klass* klass = o->blueprint();
 960   int size = o->size();
 961   Symbol* name = klass->name();
 962   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 963                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 964   return 0;
 965 }
 966 
 967 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 968     JavaThread* thread, methodOopDesc* method))
 969   assert(DTraceMethodProbes, "wrong call");
 970   Symbol* kname = method->klass_name();
 971   Symbol* name = method->name();
 972   Symbol* sig = method->signature();
 973   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 974       kname->bytes(), kname->utf8_length(),
 975       name->bytes(), name->utf8_length(),
 976       sig->bytes(), sig->utf8_length());
 977   return 0;
 978 JRT_END
 979 
 980 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 981     JavaThread* thread, methodOopDesc* method))
 982   assert(DTraceMethodProbes, "wrong call");
 983   Symbol* kname = method->klass_name();
 984   Symbol* name = method->name();
 985   Symbol* sig = method->signature();
 986   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
 987       kname->bytes(), kname->utf8_length(),
 988       name->bytes(), name->utf8_length(),
 989       sig->bytes(), sig->utf8_length());
 990   return 0;
 991 JRT_END
 992 
 993 
 994 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 995 // for a call current in progress, i.e., arguments has been pushed on stack
 996 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 997 // vtable updates, etc.  Caller frame must be compiled.
 998 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
 999   ResourceMark rm(THREAD);
1000 
1001   // last java frame on stack (which includes native call frames)
1002   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1003 
1004   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1005 }
1006 
1007 
1008 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1009 // for a call current in progress, i.e., arguments has been pushed on stack
1010 // but callee has not been invoked yet.  Caller frame must be compiled.
1011 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1012                                               vframeStream& vfst,
1013                                               Bytecodes::Code& bc,
1014                                               CallInfo& callinfo, TRAPS) {
1015   Handle receiver;
1016   Handle nullHandle;  //create a handy null handle for exception returns
1017 
1018   assert(!vfst.at_end(), "Java frame must exist");
1019 
1020   // Find caller and bci from vframe
1021   methodHandle caller (THREAD, vfst.method());
1022   int          bci    = vfst.bci();
1023 
1024   // Find bytecode
1025   Bytecode_invoke bytecode(caller, bci);
1026   bc = bytecode.java_code();
1027   int bytecode_index = bytecode.index();
1028 
1029   // Find receiver for non-static call
1030   if (bc != Bytecodes::_invokestatic) {
1031     // This register map must be update since we need to find the receiver for
1032     // compiled frames. The receiver might be in a register.
1033     RegisterMap reg_map2(thread);
1034     frame stubFrame   = thread->last_frame();
1035     // Caller-frame is a compiled frame
1036     frame callerFrame = stubFrame.sender(&reg_map2);
1037 
1038     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1039     if (callee.is_null()) {
1040       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1041     }
1042     // Retrieve from a compiled argument list
1043     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1044 
1045     if (receiver.is_null()) {
1046       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1047     }
1048   }
1049 
1050   // Resolve method. This is parameterized by bytecode.
1051   constantPoolHandle constants (THREAD, caller->constants());
1052   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
1053   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1054 
1055 #ifdef ASSERT
1056   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1057   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
1058     assert(receiver.not_null(), "should have thrown exception");
1059     KlassHandle receiver_klass (THREAD, receiver->klass());
1060     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1061                             // klass is already loaded
1062     KlassHandle static_receiver_klass (THREAD, rk);
1063     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
1064     if (receiver_klass->oop_is_instance()) {
1065       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
1066         tty->print_cr("ERROR: Klass not yet initialized!!");
1067         receiver_klass.print();
1068       }
1069       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1070     }
1071   }
1072 #endif
1073 
1074   return receiver;
1075 }
1076 
1077 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1078   ResourceMark rm(THREAD);
1079   // We need first to check if any Java activations (compiled, interpreted)
1080   // exist on the stack since last JavaCall.  If not, we need
1081   // to get the target method from the JavaCall wrapper.
1082   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1083   methodHandle callee_method;
1084   if (vfst.at_end()) {
1085     // No Java frames were found on stack since we did the JavaCall.
1086     // Hence the stack can only contain an entry_frame.  We need to
1087     // find the target method from the stub frame.
1088     RegisterMap reg_map(thread, false);
1089     frame fr = thread->last_frame();
1090     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1091     fr = fr.sender(&reg_map);
1092     assert(fr.is_entry_frame(), "must be");
1093     // fr is now pointing to the entry frame.
1094     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1095     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1096   } else {
1097     Bytecodes::Code bc;
1098     CallInfo callinfo;
1099     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1100     callee_method = callinfo.selected_method();
1101   }
1102   assert(callee_method()->is_method(), "must be");
1103   return callee_method;
1104 }
1105 
1106 // Resolves a call.
1107 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1108                                            bool is_virtual,
1109                                            bool is_optimized, TRAPS) {
1110   methodHandle callee_method;
1111   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1112   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1113     int retry_count = 0;
1114     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1115            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1116       // If has a pending exception then there is no need to re-try to
1117       // resolve this method.
1118       // If the method has been redefined, we need to try again.
1119       // Hack: we have no way to update the vtables of arrays, so don't
1120       // require that java.lang.Object has been updated.
1121 
1122       // It is very unlikely that method is redefined more than 100 times
1123       // in the middle of resolve. If it is looping here more than 100 times
1124       // means then there could be a bug here.
1125       guarantee((retry_count++ < 100),
1126                 "Could not resolve to latest version of redefined method");
1127       // method is redefined in the middle of resolve so re-try.
1128       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1129     }
1130   }
1131   return callee_method;
1132 }
1133 
1134 // Resolves a call.  The compilers generate code for calls that go here
1135 // and are patched with the real destination of the call.
1136 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1137                                            bool is_virtual,
1138                                            bool is_optimized, TRAPS) {
1139 
1140   ResourceMark rm(thread);
1141   RegisterMap cbl_map(thread, false);
1142   frame caller_frame = thread->last_frame().sender(&cbl_map);
1143 
1144   CodeBlob* caller_cb = caller_frame.cb();
1145   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1146   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1147   // make sure caller is not getting deoptimized
1148   // and removed before we are done with it.
1149   // CLEANUP - with lazy deopt shouldn't need this lock
1150   nmethodLocker caller_lock(caller_nm);
1151 
1152 
1153   // determine call info & receiver
1154   // note: a) receiver is NULL for static calls
1155   //       b) an exception is thrown if receiver is NULL for non-static calls
1156   CallInfo call_info;
1157   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1158   Handle receiver = find_callee_info(thread, invoke_code,
1159                                      call_info, CHECK_(methodHandle()));
1160   methodHandle callee_method = call_info.selected_method();
1161 
1162   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
1163          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
1164 
1165 #ifndef PRODUCT
1166   // tracing/debugging/statistics
1167   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1168                 (is_virtual) ? (&_resolve_virtual_ctr) :
1169                                (&_resolve_static_ctr);
1170   Atomic::inc(addr);
1171 
1172   if (TraceCallFixup) {
1173     ResourceMark rm(thread);
1174     tty->print("resolving %s%s (%s) call to",
1175       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1176       Bytecodes::name(invoke_code));
1177     callee_method->print_short_name(tty);
1178     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1179   }
1180 #endif
1181 
1182   // JSR 292
1183   // If the resolved method is a MethodHandle invoke target the call
1184   // site must be a MethodHandle call site.
1185   if (callee_method->is_method_handle_invoke()) {
1186     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1187   }
1188 
1189   // Compute entry points. This might require generation of C2I converter
1190   // frames, so we cannot be holding any locks here. Furthermore, the
1191   // computation of the entry points is independent of patching the call.  We
1192   // always return the entry-point, but we only patch the stub if the call has
1193   // not been deoptimized.  Return values: For a virtual call this is an
1194   // (cached_oop, destination address) pair. For a static call/optimized
1195   // virtual this is just a destination address.
1196 
1197   StaticCallInfo static_call_info;
1198   CompiledICInfo virtual_call_info;
1199 
1200   // Make sure the callee nmethod does not get deoptimized and removed before
1201   // we are done patching the code.
1202   nmethod* callee_nm = callee_method->code();
1203   nmethodLocker nl_callee(callee_nm);
1204 #ifdef ASSERT
1205   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1206 #endif
1207 
1208   if (is_virtual) {
1209     assert(receiver.not_null(), "sanity check");
1210     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1211     KlassHandle h_klass(THREAD, receiver->klass());
1212     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1213                      is_optimized, static_bound, virtual_call_info,
1214                      CHECK_(methodHandle()));
1215   } else {
1216     // static call
1217     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1218   }
1219 
1220   // grab lock, check for deoptimization and potentially patch caller
1221   {
1222     MutexLocker ml_patch(CompiledIC_lock);
1223 
1224     // Now that we are ready to patch if the methodOop was redefined then
1225     // don't update call site and let the caller retry.
1226 
1227     if (!callee_method->is_old()) {
1228 #ifdef ASSERT
1229       // We must not try to patch to jump to an already unloaded method.
1230       if (dest_entry_point != 0) {
1231         assert(CodeCache::find_blob(dest_entry_point) != NULL,
1232                "should not unload nmethod while locked");
1233       }
1234 #endif
1235       if (is_virtual) {
1236         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1237         if (inline_cache->is_clean()) {
1238           inline_cache->set_to_monomorphic(virtual_call_info);
1239         }
1240       } else {
1241         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1242         if (ssc->is_clean()) ssc->set(static_call_info);
1243       }
1244     }
1245 
1246   } // unlock CompiledIC_lock
1247 
1248   return callee_method;
1249 }
1250 
1251 
1252 // Inline caches exist only in compiled code
1253 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1254 #ifdef ASSERT
1255   RegisterMap reg_map(thread, false);
1256   frame stub_frame = thread->last_frame();
1257   assert(stub_frame.is_runtime_frame(), "sanity check");
1258   frame caller_frame = stub_frame.sender(&reg_map);
1259   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1260   assert(!caller_frame.is_ricochet_frame(), "unexpected frame");
1261 #endif /* ASSERT */
1262 
1263   methodHandle callee_method;
1264   JRT_BLOCK
1265     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1266     // Return methodOop through TLS
1267     thread->set_vm_result(callee_method());
1268   JRT_BLOCK_END
1269   // return compiled code entry point after potential safepoints
1270   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1271   return callee_method->verified_code_entry();
1272 JRT_END
1273 
1274 
1275 // Handle call site that has been made non-entrant
1276 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1277   // 6243940 We might end up in here if the callee is deoptimized
1278   // as we race to call it.  We don't want to take a safepoint if
1279   // the caller was interpreted because the caller frame will look
1280   // interpreted to the stack walkers and arguments are now
1281   // "compiled" so it is much better to make this transition
1282   // invisible to the stack walking code. The i2c path will
1283   // place the callee method in the callee_target. It is stashed
1284   // there because if we try and find the callee by normal means a
1285   // safepoint is possible and have trouble gc'ing the compiled args.
1286   RegisterMap reg_map(thread, false);
1287   frame stub_frame = thread->last_frame();
1288   assert(stub_frame.is_runtime_frame(), "sanity check");
1289   frame caller_frame = stub_frame.sender(&reg_map);
1290 
1291   // MethodHandle invokes don't have a CompiledIC and should always
1292   // simply redispatch to the callee_target.
1293   address   sender_pc = caller_frame.pc();
1294   CodeBlob* sender_cb = caller_frame.cb();
1295   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1296   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
1297   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
1298     // If the callee_target is set, then we have come here via an i2c
1299     // adapter.
1300     methodOop callee = thread->callee_target();
1301     if (callee != NULL) {
1302       assert(callee->is_method(), "sanity");
1303       is_mh_invoke_via_adapter = true;
1304     }
1305   }
1306 
1307   if (caller_frame.is_interpreted_frame() ||
1308       caller_frame.is_entry_frame()       ||
1309       caller_frame.is_ricochet_frame()    ||
1310       is_mh_invoke_via_adapter) {
1311     methodOop callee = thread->callee_target();
1312     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1313     thread->set_vm_result(callee);
1314     thread->set_callee_target(NULL);
1315     return callee->get_c2i_entry();
1316   }
1317 
1318   // Must be compiled to compiled path which is safe to stackwalk
1319   methodHandle callee_method;
1320   JRT_BLOCK
1321     // Force resolving of caller (if we called from compiled frame)
1322     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1323     thread->set_vm_result(callee_method());
1324   JRT_BLOCK_END
1325   // return compiled code entry point after potential safepoints
1326   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1327   return callee_method->verified_code_entry();
1328 JRT_END
1329 
1330 
1331 // resolve a static call and patch code
1332 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1333   methodHandle callee_method;
1334   JRT_BLOCK
1335     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1336     thread->set_vm_result(callee_method());
1337   JRT_BLOCK_END
1338   // return compiled code entry point after potential safepoints
1339   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1340   return callee_method->verified_code_entry();
1341 JRT_END
1342 
1343 
1344 // resolve virtual call and update inline cache to monomorphic
1345 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1346   methodHandle callee_method;
1347   JRT_BLOCK
1348     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1349     thread->set_vm_result(callee_method());
1350   JRT_BLOCK_END
1351   // return compiled code entry point after potential safepoints
1352   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1353   return callee_method->verified_code_entry();
1354 JRT_END
1355 
1356 
1357 // Resolve a virtual call that can be statically bound (e.g., always
1358 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1359 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1360   methodHandle callee_method;
1361   JRT_BLOCK
1362     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1363     thread->set_vm_result(callee_method());
1364   JRT_BLOCK_END
1365   // return compiled code entry point after potential safepoints
1366   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1367   return callee_method->verified_code_entry();
1368 JRT_END
1369 
1370 
1371 
1372 
1373 
1374 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1375   ResourceMark rm(thread);
1376   CallInfo call_info;
1377   Bytecodes::Code bc;
1378 
1379   // receiver is NULL for static calls. An exception is thrown for NULL
1380   // receivers for non-static calls
1381   Handle receiver = find_callee_info(thread, bc, call_info,
1382                                      CHECK_(methodHandle()));
1383   // Compiler1 can produce virtual call sites that can actually be statically bound
1384   // If we fell thru to below we would think that the site was going megamorphic
1385   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1386   // we'd try and do a vtable dispatch however methods that can be statically bound
1387   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1388   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1389   // plain ic_miss) and the site will be converted to an optimized virtual call site
1390   // never to miss again. I don't believe C2 will produce code like this but if it
1391   // did this would still be the correct thing to do for it too, hence no ifdef.
1392   //
1393   if (call_info.resolved_method()->can_be_statically_bound()) {
1394     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1395     if (TraceCallFixup) {
1396       RegisterMap reg_map(thread, false);
1397       frame caller_frame = thread->last_frame().sender(&reg_map);
1398       ResourceMark rm(thread);
1399       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1400       callee_method->print_short_name(tty);
1401       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1402       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1403     }
1404     return callee_method;
1405   }
1406 
1407   methodHandle callee_method = call_info.selected_method();
1408 
1409   bool should_be_mono = false;
1410 
1411 #ifndef PRODUCT
1412   Atomic::inc(&_ic_miss_ctr);
1413 
1414   // Statistics & Tracing
1415   if (TraceCallFixup) {
1416     ResourceMark rm(thread);
1417     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1418     callee_method->print_short_name(tty);
1419     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1420   }
1421 
1422   if (ICMissHistogram) {
1423     MutexLocker m(VMStatistic_lock);
1424     RegisterMap reg_map(thread, false);
1425     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1426     // produce statistics under the lock
1427     trace_ic_miss(f.pc());
1428   }
1429 #endif
1430 
1431   // install an event collector so that when a vtable stub is created the
1432   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1433   // event can't be posted when the stub is created as locks are held
1434   // - instead the event will be deferred until the event collector goes
1435   // out of scope.
1436   JvmtiDynamicCodeEventCollector event_collector;
1437 
1438   // Update inline cache to megamorphic. Skip update if caller has been
1439   // made non-entrant or we are called from interpreted.
1440   { MutexLocker ml_patch (CompiledIC_lock);
1441     RegisterMap reg_map(thread, false);
1442     frame caller_frame = thread->last_frame().sender(&reg_map);
1443     CodeBlob* cb = caller_frame.cb();
1444     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1445       // Not a non-entrant nmethod, so find inline_cache
1446       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1447       bool should_be_mono = false;
1448       if (inline_cache->is_optimized()) {
1449         if (TraceCallFixup) {
1450           ResourceMark rm(thread);
1451           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1452           callee_method->print_short_name(tty);
1453           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1454         }
1455         should_be_mono = true;
1456       } else {
1457         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1458         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1459 
1460           if (receiver()->klass() == ic_oop->holder_klass()) {
1461             // This isn't a real miss. We must have seen that compiled code
1462             // is now available and we want the call site converted to a
1463             // monomorphic compiled call site.
1464             // We can't assert for callee_method->code() != NULL because it
1465             // could have been deoptimized in the meantime
1466             if (TraceCallFixup) {
1467               ResourceMark rm(thread);
1468               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1469               callee_method->print_short_name(tty);
1470               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1471             }
1472             should_be_mono = true;
1473           }
1474         }
1475       }
1476 
1477       if (should_be_mono) {
1478 
1479         // We have a path that was monomorphic but was going interpreted
1480         // and now we have (or had) a compiled entry. We correct the IC
1481         // by using a new icBuffer.
1482         CompiledICInfo info;
1483         KlassHandle receiver_klass(THREAD, receiver()->klass());
1484         inline_cache->compute_monomorphic_entry(callee_method,
1485                                                 receiver_klass,
1486                                                 inline_cache->is_optimized(),
1487                                                 false,
1488                                                 info, CHECK_(methodHandle()));
1489         inline_cache->set_to_monomorphic(info);
1490       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1491         // Change to megamorphic
1492         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1493       } else {
1494         // Either clean or megamorphic
1495       }
1496     }
1497   } // Release CompiledIC_lock
1498 
1499   return callee_method;
1500 }
1501 
1502 //
1503 // Resets a call-site in compiled code so it will get resolved again.
1504 // This routines handles both virtual call sites, optimized virtual call
1505 // sites, and static call sites. Typically used to change a call sites
1506 // destination from compiled to interpreted.
1507 //
1508 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1509   ResourceMark rm(thread);
1510   RegisterMap reg_map(thread, false);
1511   frame stub_frame = thread->last_frame();
1512   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1513   frame caller = stub_frame.sender(&reg_map);
1514 
1515   // Do nothing if the frame isn't a live compiled frame.
1516   // nmethod could be deoptimized by the time we get here
1517   // so no update to the caller is needed.
1518 
1519   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1520 
1521     address pc = caller.pc();
1522     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1523 
1524     // Default call_addr is the location of the "basic" call.
1525     // Determine the address of the call we a reresolving. With
1526     // Inline Caches we will always find a recognizable call.
1527     // With Inline Caches disabled we may or may not find a
1528     // recognizable call. We will always find a call for static
1529     // calls and for optimized virtual calls. For vanilla virtual
1530     // calls it depends on the state of the UseInlineCaches switch.
1531     //
1532     // With Inline Caches disabled we can get here for a virtual call
1533     // for two reasons:
1534     //   1 - calling an abstract method. The vtable for abstract methods
1535     //       will run us thru handle_wrong_method and we will eventually
1536     //       end up in the interpreter to throw the ame.
1537     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1538     //       call and between the time we fetch the entry address and
1539     //       we jump to it the target gets deoptimized. Similar to 1
1540     //       we will wind up in the interprter (thru a c2i with c2).
1541     //
1542     address call_addr = NULL;
1543     {
1544       // Get call instruction under lock because another thread may be
1545       // busy patching it.
1546       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1547       // Location of call instruction
1548       if (NativeCall::is_call_before(pc)) {
1549         NativeCall *ncall = nativeCall_before(pc);
1550         call_addr = ncall->instruction_address();
1551       }
1552     }
1553 
1554     // Check for static or virtual call
1555     bool is_static_call = false;
1556     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1557     // Make sure nmethod doesn't get deoptimized and removed until
1558     // this is done with it.
1559     // CLEANUP - with lazy deopt shouldn't need this lock
1560     nmethodLocker nmlock(caller_nm);
1561 
1562     if (call_addr != NULL) {
1563       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1564       int ret = iter.next(); // Get item
1565       if (ret) {
1566         assert(iter.addr() == call_addr, "must find call");
1567         if (iter.type() == relocInfo::static_call_type) {
1568           is_static_call = true;
1569         } else {
1570           assert(iter.type() == relocInfo::virtual_call_type ||
1571                  iter.type() == relocInfo::opt_virtual_call_type
1572                 , "unexpected relocInfo. type");
1573         }
1574       } else {
1575         assert(!UseInlineCaches, "relocation info. must exist for this address");
1576       }
1577 
1578       // Cleaning the inline cache will force a new resolve. This is more robust
1579       // than directly setting it to the new destination, since resolving of calls
1580       // is always done through the same code path. (experience shows that it
1581       // leads to very hard to track down bugs, if an inline cache gets updated
1582       // to a wrong method). It should not be performance critical, since the
1583       // resolve is only done once.
1584 
1585       MutexLocker ml(CompiledIC_lock);
1586       //
1587       // We do not patch the call site if the nmethod has been made non-entrant
1588       // as it is a waste of time
1589       //
1590       if (caller_nm->is_in_use()) {
1591         if (is_static_call) {
1592           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1593           ssc->set_to_clean();
1594         } else {
1595           // compiled, dispatched call (which used to call an interpreted method)
1596           CompiledIC* inline_cache = CompiledIC_at(call_addr);
1597           inline_cache->set_to_clean();
1598         }
1599       }
1600     }
1601 
1602   }
1603 
1604   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1605 
1606 
1607 #ifndef PRODUCT
1608   Atomic::inc(&_wrong_method_ctr);
1609 
1610   if (TraceCallFixup) {
1611     ResourceMark rm(thread);
1612     tty->print("handle_wrong_method reresolving call to");
1613     callee_method->print_short_name(tty);
1614     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1615   }
1616 #endif
1617 
1618   return callee_method;
1619 }
1620 
1621 // ---------------------------------------------------------------------------
1622 // We are calling the interpreter via a c2i. Normally this would mean that
1623 // we were called by a compiled method. However we could have lost a race
1624 // where we went int -> i2c -> c2i and so the caller could in fact be
1625 // interpreted. If the caller is compiled we attempt to patch the caller
1626 // so he no longer calls into the interpreter.
1627 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1628   methodOop moop(method);
1629 
1630   address entry_point = moop->from_compiled_entry();
1631 
1632   // It's possible that deoptimization can occur at a call site which hasn't
1633   // been resolved yet, in which case this function will be called from
1634   // an nmethod that has been patched for deopt and we can ignore the
1635   // request for a fixup.
1636   // Also it is possible that we lost a race in that from_compiled_entry
1637   // is now back to the i2c in that case we don't need to patch and if
1638   // we did we'd leap into space because the callsite needs to use
1639   // "to interpreter" stub in order to load up the methodOop. Don't
1640   // ask me how I know this...
1641 
1642   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1643   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1644     return;
1645   }
1646 
1647   // The check above makes sure this is a nmethod.
1648   nmethod* nm = cb->as_nmethod_or_null();
1649   assert(nm, "must be");
1650 
1651   // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
1652   // to implement MethodHandle actions.
1653   if (nm->is_method_handle_return(caller_pc)) {
1654     return;
1655   }
1656 
1657   // There is a benign race here. We could be attempting to patch to a compiled
1658   // entry point at the same time the callee is being deoptimized. If that is
1659   // the case then entry_point may in fact point to a c2i and we'd patch the
1660   // call site with the same old data. clear_code will set code() to NULL
1661   // at the end of it. If we happen to see that NULL then we can skip trying
1662   // to patch. If we hit the window where the callee has a c2i in the
1663   // from_compiled_entry and the NULL isn't present yet then we lose the race
1664   // and patch the code with the same old data. Asi es la vida.
1665 
1666   if (moop->code() == NULL) return;
1667 
1668   if (nm->is_in_use()) {
1669 
1670     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1671     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1672     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1673       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1674       //
1675       // bug 6281185. We might get here after resolving a call site to a vanilla
1676       // virtual call. Because the resolvee uses the verified entry it may then
1677       // see compiled code and attempt to patch the site by calling us. This would
1678       // then incorrectly convert the call site to optimized and its downhill from
1679       // there. If you're lucky you'll get the assert in the bugid, if not you've
1680       // just made a call site that could be megamorphic into a monomorphic site
1681       // for the rest of its life! Just another racing bug in the life of
1682       // fixup_callers_callsite ...
1683       //
1684       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1685       iter.next();
1686       assert(iter.has_current(), "must have a reloc at java call site");
1687       relocInfo::relocType typ = iter.reloc()->type();
1688       if ( typ != relocInfo::static_call_type &&
1689            typ != relocInfo::opt_virtual_call_type &&
1690            typ != relocInfo::static_stub_type) {
1691         return;
1692       }
1693       address destination = call->destination();
1694       if (destination != entry_point) {
1695         CodeBlob* callee = CodeCache::find_blob(destination);
1696         // callee == cb seems weird. It means calling interpreter thru stub.
1697         if (callee == cb || callee->is_adapter_blob()) {
1698           // static call or optimized virtual
1699           if (TraceCallFixup) {
1700             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1701             moop->print_short_name(tty);
1702             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1703           }
1704           call->set_destination_mt_safe(entry_point);
1705         } else {
1706           if (TraceCallFixup) {
1707             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1708             moop->print_short_name(tty);
1709             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1710           }
1711           // assert is too strong could also be resolve destinations.
1712           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1713         }
1714       } else {
1715           if (TraceCallFixup) {
1716             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1717             moop->print_short_name(tty);
1718             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1719           }
1720       }
1721     }
1722   }
1723 
1724 IRT_END
1725 
1726 
1727 // same as JVM_Arraycopy, but called directly from compiled code
1728 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1729                                                 oopDesc* dest, jint dest_pos,
1730                                                 jint length,
1731                                                 JavaThread* thread)) {
1732 #ifndef PRODUCT
1733   _slow_array_copy_ctr++;
1734 #endif
1735   // Check if we have null pointers
1736   if (src == NULL || dest == NULL) {
1737     THROW(vmSymbols::java_lang_NullPointerException());
1738   }
1739   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1740   // even though the copy_array API also performs dynamic checks to ensure
1741   // that src and dest are truly arrays (and are conformable).
1742   // The copy_array mechanism is awkward and could be removed, but
1743   // the compilers don't call this function except as a last resort,
1744   // so it probably doesn't matter.
1745   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1746                                         (arrayOopDesc*)dest, dest_pos,
1747                                         length, thread);
1748 }
1749 JRT_END
1750 
1751 char* SharedRuntime::generate_class_cast_message(
1752     JavaThread* thread, const char* objName) {
1753 
1754   // Get target class name from the checkcast instruction
1755   vframeStream vfst(thread, true);
1756   assert(!vfst.at_end(), "Java frame must exist");
1757   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1758   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1759     cc.index(), thread));
1760   return generate_class_cast_message(objName, targetKlass->external_name());
1761 }
1762 
1763 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1764                                                         oopDesc* required,
1765                                                         oopDesc* actual) {
1766   if (TraceMethodHandles) {
1767     tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
1768                   thread, required, actual);
1769   }
1770   assert(EnableInvokeDynamic, "");
1771   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1772   char* message = NULL;
1773   if (singleKlass != NULL) {
1774     const char* objName = "argument or return value";
1775     if (actual != NULL) {
1776       // be flexible about the junk passed in:
1777       klassOop ak = (actual->is_klass()
1778                      ? (klassOop)actual
1779                      : actual->klass());
1780       objName = Klass::cast(ak)->external_name();
1781     }
1782     Klass* targetKlass = Klass::cast(required->is_klass()
1783                                      ? (klassOop)required
1784                                      : java_lang_Class::as_klassOop(required));
1785     message = generate_class_cast_message(objName, targetKlass->external_name());
1786   } else {
1787     // %%% need to get the MethodType string, without messing around too much
1788     const char* desc = NULL;
1789     // Get a signature from the invoke instruction
1790     const char* mhName = "method handle";
1791     const char* targetType = "the required signature";
1792     int targetArity = -1, mhArity = -1;
1793     vframeStream vfst(thread, true);
1794     if (!vfst.at_end()) {
1795       Bytecode_invoke call(vfst.method(), vfst.bci());
1796       methodHandle target;
1797       {
1798         EXCEPTION_MARK;
1799         target = call.static_target(THREAD);
1800         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1801       }
1802       if (target.not_null()
1803           && target->is_method_handle_invoke()
1804           && required == target->method_handle_type()) {
1805         targetType = target->signature()->as_C_string();
1806         targetArity = ArgumentCount(target->signature()).size();
1807       }
1808     }
1809     KlassHandle kignore; int dmf_flags = 0;
1810     methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
1811     if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
1812                        MethodHandles::_dmf_does_dispatch |
1813                        MethodHandles::_dmf_from_interface)) != 0)
1814       actual_method = methodHandle();  // MH does extra binds, drops, etc.
1815     bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
1816     if (actual_method.not_null()) {
1817       mhName = actual_method->signature()->as_C_string();
1818       mhArity = ArgumentCount(actual_method->signature()).size();
1819       if (!actual_method->is_static())  mhArity += 1;
1820     } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
1821       oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
1822       mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
1823       stringStream st;
1824       java_lang_invoke_MethodType::print_signature(mhType, &st);
1825       mhName = st.as_string();
1826     }
1827     if (targetArity != -1 && targetArity != mhArity) {
1828       if (has_receiver && targetArity == mhArity-1)
1829         desc = " cannot be called without a receiver argument as ";
1830       else
1831         desc = " cannot be called with a different arity as ";
1832     }
1833     message = generate_class_cast_message(mhName, targetType,
1834                                           desc != NULL ? desc :
1835                                           " cannot be called as ");
1836   }
1837   if (TraceMethodHandles) {
1838     tty->print_cr("WrongMethodType => message=%s", message);
1839   }
1840   return message;
1841 }
1842 
1843 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1844                                                             oopDesc* required) {
1845   if (required == NULL)  return NULL;
1846   if (required->klass() == SystemDictionary::Class_klass())
1847     return required;
1848   if (required->is_klass())
1849     return Klass::cast(klassOop(required))->java_mirror();
1850   return NULL;
1851 }
1852 
1853 
1854 char* SharedRuntime::generate_class_cast_message(
1855     const char* objName, const char* targetKlassName, const char* desc) {
1856   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1857 
1858   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1859   if (NULL == message) {
1860     // Shouldn't happen, but don't cause even more problems if it does
1861     message = const_cast<char*>(objName);
1862   } else {
1863     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1864   }
1865   return message;
1866 }
1867 
1868 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1869   (void) JavaThread::current()->reguard_stack();
1870 JRT_END
1871 
1872 
1873 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1874 #ifndef PRODUCT
1875 int SharedRuntime::_monitor_enter_ctr=0;
1876 #endif
1877 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1878   oop obj(_obj);
1879 #ifndef PRODUCT
1880   _monitor_enter_ctr++;             // monitor enter slow
1881 #endif
1882   if (PrintBiasedLockingStatistics) {
1883     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1884   }
1885   Handle h_obj(THREAD, obj);
1886   if (UseBiasedLocking) {
1887     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1888     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1889   } else {
1890     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1891   }
1892   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1893 JRT_END
1894 
1895 #ifndef PRODUCT
1896 int SharedRuntime::_monitor_exit_ctr=0;
1897 #endif
1898 // Handles the uncommon cases of monitor unlocking in compiled code
1899 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1900    oop obj(_obj);
1901 #ifndef PRODUCT
1902   _monitor_exit_ctr++;              // monitor exit slow
1903 #endif
1904   Thread* THREAD = JavaThread::current();
1905   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1906   // testing was unable to ever fire the assert that guarded it so I have removed it.
1907   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1908 #undef MIGHT_HAVE_PENDING
1909 #ifdef MIGHT_HAVE_PENDING
1910   // Save and restore any pending_exception around the exception mark.
1911   // While the slow_exit must not throw an exception, we could come into
1912   // this routine with one set.
1913   oop pending_excep = NULL;
1914   const char* pending_file;
1915   int pending_line;
1916   if (HAS_PENDING_EXCEPTION) {
1917     pending_excep = PENDING_EXCEPTION;
1918     pending_file  = THREAD->exception_file();
1919     pending_line  = THREAD->exception_line();
1920     CLEAR_PENDING_EXCEPTION;
1921   }
1922 #endif /* MIGHT_HAVE_PENDING */
1923 
1924   {
1925     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1926     EXCEPTION_MARK;
1927     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1928   }
1929 
1930 #ifdef MIGHT_HAVE_PENDING
1931   if (pending_excep != NULL) {
1932     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1933   }
1934 #endif /* MIGHT_HAVE_PENDING */
1935 JRT_END
1936 
1937 #ifndef PRODUCT
1938 
1939 void SharedRuntime::print_statistics() {
1940   ttyLocker ttyl;
1941   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1942 
1943   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1944   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1945   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1946 
1947   SharedRuntime::print_ic_miss_histogram();
1948 
1949   if (CountRemovableExceptions) {
1950     if (_nof_removable_exceptions > 0) {
1951       Unimplemented(); // this counter is not yet incremented
1952       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1953     }
1954   }
1955 
1956   // Dump the JRT_ENTRY counters
1957   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1958   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1959   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1960   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1961   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1962   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1963   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1964 
1965   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1966   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1967   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1968   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1969   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1970 
1971   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1972   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1973   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1974   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1975   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1976   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1977   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1978   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1979   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1980   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1981   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1982   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1983   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1984   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1985   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1986   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1987 
1988   AdapterHandlerLibrary::print_statistics();
1989 
1990   if (xtty != NULL)  xtty->tail("statistics");
1991 }
1992 
1993 inline double percent(int x, int y) {
1994   return 100.0 * x / MAX2(y, 1);
1995 }
1996 
1997 class MethodArityHistogram {
1998  public:
1999   enum { MAX_ARITY = 256 };
2000  private:
2001   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2002   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2003   static int _max_arity;                      // max. arity seen
2004   static int _max_size;                       // max. arg size seen
2005 
2006   static void add_method_to_histogram(nmethod* nm) {
2007     methodOop m = nm->method();
2008     ArgumentCount args(m->signature());
2009     int arity   = args.size() + (m->is_static() ? 0 : 1);
2010     int argsize = m->size_of_parameters();
2011     arity   = MIN2(arity, MAX_ARITY-1);
2012     argsize = MIN2(argsize, MAX_ARITY-1);
2013     int count = nm->method()->compiled_invocation_count();
2014     _arity_histogram[arity]  += count;
2015     _size_histogram[argsize] += count;
2016     _max_arity = MAX2(_max_arity, arity);
2017     _max_size  = MAX2(_max_size, argsize);
2018   }
2019 
2020   void print_histogram_helper(int n, int* histo, const char* name) {
2021     const int N = MIN2(5, n);
2022     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2023     double sum = 0;
2024     double weighted_sum = 0;
2025     int i;
2026     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2027     double rest = sum;
2028     double percent = sum / 100;
2029     for (i = 0; i <= N; i++) {
2030       rest -= histo[i];
2031       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2032     }
2033     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2034     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2035   }
2036 
2037   void print_histogram() {
2038     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2039     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2040     tty->print_cr("\nSame for parameter size (in words):");
2041     print_histogram_helper(_max_size, _size_histogram, "size");
2042     tty->cr();
2043   }
2044 
2045  public:
2046   MethodArityHistogram() {
2047     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2048     _max_arity = _max_size = 0;
2049     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2050     CodeCache::nmethods_do(add_method_to_histogram);
2051     print_histogram();
2052   }
2053 };
2054 
2055 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2056 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2057 int MethodArityHistogram::_max_arity;
2058 int MethodArityHistogram::_max_size;
2059 
2060 void SharedRuntime::print_call_statistics(int comp_total) {
2061   tty->print_cr("Calls from compiled code:");
2062   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2063   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2064   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2065   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2066   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2067   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2068   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2069   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2070   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2071   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2072   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2073   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2074   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2075   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2076   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2077   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2078   tty->cr();
2079   tty->print_cr("Note 1: counter updates are not MT-safe.");
2080   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2081   tty->print_cr("        %% in nested categories are relative to their category");
2082   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2083   tty->cr();
2084 
2085   MethodArityHistogram h;
2086 }
2087 #endif
2088 
2089 
2090 // A simple wrapper class around the calling convention information
2091 // that allows sharing of adapters for the same calling convention.
2092 class AdapterFingerPrint : public CHeapObj {
2093  private:
2094   union {
2095     int  _compact[3];
2096     int* _fingerprint;
2097   } _value;
2098   int _length; // A negative length indicates the fingerprint is in the compact form,
2099                // Otherwise _value._fingerprint is the array.
2100 
2101   // Remap BasicTypes that are handled equivalently by the adapters.
2102   // These are correct for the current system but someday it might be
2103   // necessary to make this mapping platform dependent.
2104   static BasicType adapter_encoding(BasicType in) {
2105     assert((~0xf & in) == 0, "must fit in 4 bits");
2106     switch(in) {
2107       case T_BOOLEAN:
2108       case T_BYTE:
2109       case T_SHORT:
2110       case T_CHAR:
2111         // There are all promoted to T_INT in the calling convention
2112         return T_INT;
2113 
2114       case T_OBJECT:
2115       case T_ARRAY:
2116 #ifdef _LP64
2117         return T_LONG;
2118 #else
2119         return T_INT;
2120 #endif
2121 
2122       case T_INT:
2123       case T_LONG:
2124       case T_FLOAT:
2125       case T_DOUBLE:
2126       case T_VOID:
2127         return in;
2128 
2129       default:
2130         ShouldNotReachHere();
2131         return T_CONFLICT;
2132     }
2133   }
2134 
2135  public:
2136   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2137     // The fingerprint is based on the BasicType signature encoded
2138     // into an array of ints with four entries per int.
2139     int* ptr;
2140     int len = (total_args_passed + 3) >> 2;
2141     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
2142       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2143       // Storing the signature encoded as signed chars hits about 98%
2144       // of the time.
2145       _length = -len;
2146       ptr = _value._compact;
2147     } else {
2148       _length = len;
2149       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
2150       ptr = _value._fingerprint;
2151     }
2152 
2153     // Now pack the BasicTypes with 4 per int
2154     int sig_index = 0;
2155     for (int index = 0; index < len; index++) {
2156       int value = 0;
2157       for (int byte = 0; byte < 4; byte++) {
2158         if (sig_index < total_args_passed) {
2159           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
2160         }
2161       }
2162       ptr[index] = value;
2163     }
2164   }
2165 
2166   ~AdapterFingerPrint() {
2167     if (_length > 0) {
2168       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2169     }
2170   }
2171 
2172   int value(int index) {
2173     if (_length < 0) {
2174       return _value._compact[index];
2175     }
2176     return _value._fingerprint[index];
2177   }
2178   int length() {
2179     if (_length < 0) return -_length;
2180     return _length;
2181   }
2182 
2183   bool is_compact() {
2184     return _length <= 0;
2185   }
2186 
2187   unsigned int compute_hash() {
2188     int hash = 0;
2189     for (int i = 0; i < length(); i++) {
2190       int v = value(i);
2191       hash = (hash << 8) ^ v ^ (hash >> 5);
2192     }
2193     return (unsigned int)hash;
2194   }
2195 
2196   const char* as_string() {
2197     stringStream st;
2198     for (int i = 0; i < length(); i++) {
2199       st.print(PTR_FORMAT, value(i));
2200     }
2201     return st.as_string();
2202   }
2203 
2204   bool equals(AdapterFingerPrint* other) {
2205     if (other->_length != _length) {
2206       return false;
2207     }
2208     if (_length < 0) {
2209       return _value._compact[0] == other->_value._compact[0] &&
2210              _value._compact[1] == other->_value._compact[1] &&
2211              _value._compact[2] == other->_value._compact[2];
2212     } else {
2213       for (int i = 0; i < _length; i++) {
2214         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2215           return false;
2216         }
2217       }
2218     }
2219     return true;
2220   }
2221 };
2222 
2223 
2224 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2225 class AdapterHandlerTable : public BasicHashtable {
2226   friend class AdapterHandlerTableIterator;
2227 
2228  private:
2229 
2230 #ifndef PRODUCT
2231   static int _lookups; // number of calls to lookup
2232   static int _buckets; // number of buckets checked
2233   static int _equals;  // number of buckets checked with matching hash
2234   static int _hits;    // number of successful lookups
2235   static int _compact; // number of equals calls with compact signature
2236 #endif
2237 
2238   AdapterHandlerEntry* bucket(int i) {
2239     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
2240   }
2241 
2242  public:
2243   AdapterHandlerTable()
2244     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
2245 
2246   // Create a new entry suitable for insertion in the table
2247   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2248     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
2249     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2250     return entry;
2251   }
2252 
2253   // Insert an entry into the table
2254   void add(AdapterHandlerEntry* entry) {
2255     int index = hash_to_index(entry->hash());
2256     add_entry(index, entry);
2257   }
2258 
2259   void free_entry(AdapterHandlerEntry* entry) {
2260     entry->deallocate();
2261     BasicHashtable::free_entry(entry);
2262   }
2263 
2264   // Find a entry with the same fingerprint if it exists
2265   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2266     NOT_PRODUCT(_lookups++);
2267     AdapterFingerPrint fp(total_args_passed, sig_bt);
2268     unsigned int hash = fp.compute_hash();
2269     int index = hash_to_index(hash);
2270     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2271       NOT_PRODUCT(_buckets++);
2272       if (e->hash() == hash) {
2273         NOT_PRODUCT(_equals++);
2274         if (fp.equals(e->fingerprint())) {
2275 #ifndef PRODUCT
2276           if (fp.is_compact()) _compact++;
2277           _hits++;
2278 #endif
2279           return e;
2280         }
2281       }
2282     }
2283     return NULL;
2284   }
2285 
2286 #ifndef PRODUCT
2287   void print_statistics() {
2288     ResourceMark rm;
2289     int longest = 0;
2290     int empty = 0;
2291     int total = 0;
2292     int nonempty = 0;
2293     for (int index = 0; index < table_size(); index++) {
2294       int count = 0;
2295       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2296         count++;
2297       }
2298       if (count != 0) nonempty++;
2299       if (count == 0) empty++;
2300       if (count > longest) longest = count;
2301       total += count;
2302     }
2303     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2304                   empty, longest, total, total / (double)nonempty);
2305     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2306                   _lookups, _buckets, _equals, _hits, _compact);
2307   }
2308 #endif
2309 };
2310 
2311 
2312 #ifndef PRODUCT
2313 
2314 int AdapterHandlerTable::_lookups;
2315 int AdapterHandlerTable::_buckets;
2316 int AdapterHandlerTable::_equals;
2317 int AdapterHandlerTable::_hits;
2318 int AdapterHandlerTable::_compact;
2319 
2320 #endif
2321 
2322 class AdapterHandlerTableIterator : public StackObj {
2323  private:
2324   AdapterHandlerTable* _table;
2325   int _index;
2326   AdapterHandlerEntry* _current;
2327 
2328   void scan() {
2329     while (_index < _table->table_size()) {
2330       AdapterHandlerEntry* a = _table->bucket(_index);
2331       _index++;
2332       if (a != NULL) {
2333         _current = a;
2334         return;
2335       }
2336     }
2337   }
2338 
2339  public:
2340   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2341     scan();
2342   }
2343   bool has_next() {
2344     return _current != NULL;
2345   }
2346   AdapterHandlerEntry* next() {
2347     if (_current != NULL) {
2348       AdapterHandlerEntry* result = _current;
2349       _current = _current->next();
2350       if (_current == NULL) scan();
2351       return result;
2352     } else {
2353       return NULL;
2354     }
2355   }
2356 };
2357 
2358 
2359 // ---------------------------------------------------------------------------
2360 // Implementation of AdapterHandlerLibrary
2361 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2362 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2363 const int AdapterHandlerLibrary_size = 16*K;
2364 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2365 
2366 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2367   // Should be called only when AdapterHandlerLibrary_lock is active.
2368   if (_buffer == NULL) // Initialize lazily
2369       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2370   return _buffer;
2371 }
2372 
2373 void AdapterHandlerLibrary::initialize() {
2374   if (_adapters != NULL) return;
2375   _adapters = new AdapterHandlerTable();
2376 
2377   // Create a special handler for abstract methods.  Abstract methods
2378   // are never compiled so an i2c entry is somewhat meaningless, but
2379   // fill it in with something appropriate just in case.  Pass handle
2380   // wrong method for the c2i transitions.
2381   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2382   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2383                                                               StubRoutines::throw_AbstractMethodError_entry(),
2384                                                               wrong_method, wrong_method);
2385 }
2386 
2387 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2388                                                       address i2c_entry,
2389                                                       address c2i_entry,
2390                                                       address c2i_unverified_entry) {
2391   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2392 }
2393 
2394 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2395   // Use customized signature handler.  Need to lock around updates to
2396   // the AdapterHandlerTable (it is not safe for concurrent readers
2397   // and a single writer: this could be fixed if it becomes a
2398   // problem).
2399 
2400   // Get the address of the ic_miss handlers before we grab the
2401   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2402   // was caused by the initialization of the stubs happening
2403   // while we held the lock and then notifying jvmti while
2404   // holding it. This just forces the initialization to be a little
2405   // earlier.
2406   address ic_miss = SharedRuntime::get_ic_miss_stub();
2407   assert(ic_miss != NULL, "must have handler");
2408 
2409   ResourceMark rm;
2410 
2411   NOT_PRODUCT(int insts_size);
2412   AdapterBlob* B = NULL;
2413   AdapterHandlerEntry* entry = NULL;
2414   AdapterFingerPrint* fingerprint = NULL;
2415   {
2416     MutexLocker mu(AdapterHandlerLibrary_lock);
2417     // make sure data structure is initialized
2418     initialize();
2419 
2420     if (method->is_abstract()) {
2421       return _abstract_method_handler;
2422     }
2423 
2424     // Fill in the signature array, for the calling-convention call.
2425     int total_args_passed = method->size_of_parameters(); // All args on stack
2426 
2427     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2428     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2429     int i = 0;
2430     if (!method->is_static())  // Pass in receiver first
2431       sig_bt[i++] = T_OBJECT;
2432     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2433       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2434       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2435         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2436     }
2437     assert(i == total_args_passed, "");
2438 
2439     // Lookup method signature's fingerprint
2440     entry = _adapters->lookup(total_args_passed, sig_bt);
2441 
2442 #ifdef ASSERT
2443     AdapterHandlerEntry* shared_entry = NULL;
2444     if (VerifyAdapterSharing && entry != NULL) {
2445       shared_entry = entry;
2446       entry = NULL;
2447     }
2448 #endif
2449 
2450     if (entry != NULL) {
2451       return entry;
2452     }
2453 
2454     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2455     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2456 
2457     // Make a C heap allocated version of the fingerprint to store in the adapter
2458     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2459 
2460     // Create I2C & C2I handlers
2461 
2462     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2463     if (buf != NULL) {
2464       CodeBuffer buffer(buf);
2465       short buffer_locs[20];
2466       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2467                                              sizeof(buffer_locs)/sizeof(relocInfo));
2468       MacroAssembler _masm(&buffer);
2469 
2470       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2471                                                      total_args_passed,
2472                                                      comp_args_on_stack,
2473                                                      sig_bt,
2474                                                      regs,
2475                                                      fingerprint);
2476 
2477 #ifdef ASSERT
2478       if (VerifyAdapterSharing) {
2479         if (shared_entry != NULL) {
2480           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2481                  "code must match");
2482           // Release the one just created and return the original
2483           _adapters->free_entry(entry);
2484           return shared_entry;
2485         } else  {
2486           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2487         }
2488       }
2489 #endif
2490 
2491       B = AdapterBlob::create(&buffer);
2492       NOT_PRODUCT(insts_size = buffer.insts_size());
2493     }
2494     if (B == NULL) {
2495       // CodeCache is full, disable compilation
2496       // Ought to log this but compile log is only per compile thread
2497       // and we're some non descript Java thread.
2498       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2499       CompileBroker::handle_full_code_cache();
2500       return NULL; // Out of CodeCache space
2501     }
2502     entry->relocate(B->content_begin());
2503 #ifndef PRODUCT
2504     // debugging suppport
2505     if (PrintAdapterHandlers) {
2506       tty->cr();
2507       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2508                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2509                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
2510       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2511       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
2512     }
2513 #endif
2514 
2515     _adapters->add(entry);
2516   }
2517   // Outside of the lock
2518   if (B != NULL) {
2519     char blob_id[256];
2520     jio_snprintf(blob_id,
2521                  sizeof(blob_id),
2522                  "%s(%s)@" PTR_FORMAT,
2523                  B->name(),
2524                  fingerprint->as_string(),
2525                  B->content_begin());
2526     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2527 
2528     if (JvmtiExport::should_post_dynamic_code_generated()) {
2529       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2530     }
2531   }
2532   return entry;
2533 }
2534 
2535 void AdapterHandlerEntry::relocate(address new_base) {
2536     ptrdiff_t delta = new_base - _i2c_entry;
2537     _i2c_entry += delta;
2538     _c2i_entry += delta;
2539     _c2i_unverified_entry += delta;
2540 }
2541 
2542 
2543 void AdapterHandlerEntry::deallocate() {
2544   delete _fingerprint;
2545 #ifdef ASSERT
2546   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2547   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
2548 #endif
2549 }
2550 
2551 
2552 #ifdef ASSERT
2553 // Capture the code before relocation so that it can be compared
2554 // against other versions.  If the code is captured after relocation
2555 // then relative instructions won't be equivalent.
2556 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2557   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
2558   _code_length = length;
2559   memcpy(_saved_code, buffer, length);
2560   _total_args_passed = total_args_passed;
2561   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
2562   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2563 }
2564 
2565 
2566 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2567   if (length != _code_length) {
2568     return false;
2569   }
2570   for (int i = 0; i < length; i++) {
2571     if (buffer[i] != _saved_code[i]) {
2572       return false;
2573     }
2574   }
2575   return true;
2576 }
2577 #endif
2578 
2579 
2580 // Create a native wrapper for this native method.  The wrapper converts the
2581 // java compiled calling convention to the native convention, handlizes
2582 // arguments, and transitions to native.  On return from the native we transition
2583 // back to java blocking if a safepoint is in progress.
2584 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2585   ResourceMark rm;
2586   nmethod* nm = NULL;
2587 
2588   assert(method->has_native_function(), "must have something valid to call!");
2589 
2590   {
2591     // perform the work while holding the lock, but perform any printing outside the lock
2592     MutexLocker mu(AdapterHandlerLibrary_lock);
2593     // See if somebody beat us to it
2594     nm = method->code();
2595     if (nm) {
2596       return nm;
2597     }
2598 
2599     ResourceMark rm;
2600 
2601     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2602     if (buf != NULL) {
2603       CodeBuffer buffer(buf);
2604       double locs_buf[20];
2605       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2606       MacroAssembler _masm(&buffer);
2607 
2608       // Fill in the signature array, for the calling-convention call.
2609       int total_args_passed = method->size_of_parameters();
2610 
2611       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2612       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2613       int i=0;
2614       if( !method->is_static() )  // Pass in receiver first
2615         sig_bt[i++] = T_OBJECT;
2616       SignatureStream ss(method->signature());
2617       for( ; !ss.at_return_type(); ss.next()) {
2618         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2619         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2620           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2621       }
2622       assert( i==total_args_passed, "" );
2623       BasicType ret_type = ss.type();
2624 
2625       // Now get the compiled-Java layout as input arguments
2626       int comp_args_on_stack;
2627       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2628 
2629       // Generate the compiled-to-native wrapper code
2630       nm = SharedRuntime::generate_native_wrapper(&_masm,
2631                                                   method,
2632                                                   compile_id,
2633                                                   total_args_passed,
2634                                                   comp_args_on_stack,
2635                                                   sig_bt,regs,
2636                                                   ret_type);
2637     }
2638   }
2639 
2640   // Must unlock before calling set_code
2641 
2642   // Install the generated code.
2643   if (nm != NULL) {
2644     if (PrintCompilation) {
2645       ttyLocker ttyl;
2646       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2647     }
2648     method->set_code(method, nm);
2649     nm->post_compiled_method_load_event();
2650   } else {
2651     // CodeCache is full, disable compilation
2652     CompileBroker::handle_full_code_cache();
2653   }
2654   return nm;
2655 }
2656 
2657 #ifdef HAVE_DTRACE_H
2658 // Create a dtrace nmethod for this method.  The wrapper converts the
2659 // java compiled calling convention to the native convention, makes a dummy call
2660 // (actually nops for the size of the call instruction, which become a trap if
2661 // probe is enabled). The returns to the caller. Since this all looks like a
2662 // leaf no thread transition is needed.
2663 
2664 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2665   ResourceMark rm;
2666   nmethod* nm = NULL;
2667 
2668   if (PrintCompilation) {
2669     ttyLocker ttyl;
2670     tty->print("---   n%s  ");
2671     method->print_short_name(tty);
2672     if (method->is_static()) {
2673       tty->print(" (static)");
2674     }
2675     tty->cr();
2676   }
2677 
2678   {
2679     // perform the work while holding the lock, but perform any printing
2680     // outside the lock
2681     MutexLocker mu(AdapterHandlerLibrary_lock);
2682     // See if somebody beat us to it
2683     nm = method->code();
2684     if (nm) {
2685       return nm;
2686     }
2687 
2688     ResourceMark rm;
2689 
2690     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2691     if (buf != NULL) {
2692       CodeBuffer buffer(buf);
2693       // Need a few relocation entries
2694       double locs_buf[20];
2695       buffer.insts()->initialize_shared_locs(
2696         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2697       MacroAssembler _masm(&buffer);
2698 
2699       // Generate the compiled-to-native wrapper code
2700       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2701     }
2702   }
2703   return nm;
2704 }
2705 
2706 // the dtrace method needs to convert java lang string to utf8 string.
2707 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2708   typeArrayOop jlsValue  = java_lang_String::value(src);
2709   int          jlsOffset = java_lang_String::offset(src);
2710   int          jlsLen    = java_lang_String::length(src);
2711   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2712                                            jlsValue->char_at_addr(jlsOffset);
2713   assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2714   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2715 }
2716 #endif // ndef HAVE_DTRACE_H
2717 
2718 // -------------------------------------------------------------------------
2719 // Java-Java calling convention
2720 // (what you use when Java calls Java)
2721 
2722 //------------------------------name_for_receiver----------------------------------
2723 // For a given signature, return the VMReg for parameter 0.
2724 VMReg SharedRuntime::name_for_receiver() {
2725   VMRegPair regs;
2726   BasicType sig_bt = T_OBJECT;
2727   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2728   // Return argument 0 register.  In the LP64 build pointers
2729   // take 2 registers, but the VM wants only the 'main' name.
2730   return regs.first();
2731 }
2732 
2733 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
2734   // This method is returning a data structure allocating as a
2735   // ResourceObject, so do not put any ResourceMarks in here.
2736   char *s = sig->as_C_string();
2737   int len = (int)strlen(s);
2738   *s++; len--;                  // Skip opening paren
2739   char *t = s+len;
2740   while( *(--t) != ')' ) ;      // Find close paren
2741 
2742   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2743   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2744   int cnt = 0;
2745   if (has_receiver) {
2746     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2747   }
2748 
2749   while( s < t ) {
2750     switch( *s++ ) {            // Switch on signature character
2751     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2752     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2753     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2754     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2755     case 'I': sig_bt[cnt++] = T_INT;     break;
2756     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2757     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2758     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2759     case 'V': sig_bt[cnt++] = T_VOID;    break;
2760     case 'L':                   // Oop
2761       while( *s++ != ';'  ) ;   // Skip signature
2762       sig_bt[cnt++] = T_OBJECT;
2763       break;
2764     case '[': {                 // Array
2765       do {                      // Skip optional size
2766         while( *s >= '0' && *s <= '9' ) s++;
2767       } while( *s++ == '[' );   // Nested arrays?
2768       // Skip element type
2769       if( s[-1] == 'L' )
2770         while( *s++ != ';'  ) ; // Skip signature
2771       sig_bt[cnt++] = T_ARRAY;
2772       break;
2773     }
2774     default : ShouldNotReachHere();
2775     }
2776   }
2777   assert( cnt < 256, "grow table size" );
2778 
2779   int comp_args_on_stack;
2780   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2781 
2782   // the calling convention doesn't count out_preserve_stack_slots so
2783   // we must add that in to get "true" stack offsets.
2784 
2785   if (comp_args_on_stack) {
2786     for (int i = 0; i < cnt; i++) {
2787       VMReg reg1 = regs[i].first();
2788       if( reg1->is_stack()) {
2789         // Yuck
2790         reg1 = reg1->bias(out_preserve_stack_slots());
2791       }
2792       VMReg reg2 = regs[i].second();
2793       if( reg2->is_stack()) {
2794         // Yuck
2795         reg2 = reg2->bias(out_preserve_stack_slots());
2796       }
2797       regs[i].set_pair(reg2, reg1);
2798     }
2799   }
2800 
2801   // results
2802   *arg_size = cnt;
2803   return regs;
2804 }
2805 
2806 // OSR Migration Code
2807 //
2808 // This code is used convert interpreter frames into compiled frames.  It is
2809 // called from very start of a compiled OSR nmethod.  A temp array is
2810 // allocated to hold the interesting bits of the interpreter frame.  All
2811 // active locks are inflated to allow them to move.  The displaced headers and
2812 // active interpeter locals are copied into the temp buffer.  Then we return
2813 // back to the compiled code.  The compiled code then pops the current
2814 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2815 // copies the interpreter locals and displaced headers where it wants.
2816 // Finally it calls back to free the temp buffer.
2817 //
2818 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2819 
2820 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2821 
2822 #ifdef IA64
2823   ShouldNotReachHere(); // NYI
2824 #endif /* IA64 */
2825 
2826   //
2827   // This code is dependent on the memory layout of the interpreter local
2828   // array and the monitors. On all of our platforms the layout is identical
2829   // so this code is shared. If some platform lays the their arrays out
2830   // differently then this code could move to platform specific code or
2831   // the code here could be modified to copy items one at a time using
2832   // frame accessor methods and be platform independent.
2833 
2834   frame fr = thread->last_frame();
2835   assert( fr.is_interpreted_frame(), "" );
2836   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2837 
2838   // Figure out how many monitors are active.
2839   int active_monitor_count = 0;
2840   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2841        kptr < fr.interpreter_frame_monitor_begin();
2842        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2843     if( kptr->obj() != NULL ) active_monitor_count++;
2844   }
2845 
2846   // QQQ we could place number of active monitors in the array so that compiled code
2847   // could double check it.
2848 
2849   methodOop moop = fr.interpreter_frame_method();
2850   int max_locals = moop->max_locals();
2851   // Allocate temp buffer, 1 word per local & 2 per active monitor
2852   int buf_size_words = max_locals + active_monitor_count*2;
2853   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2854 
2855   // Copy the locals.  Order is preserved so that loading of longs works.
2856   // Since there's no GC I can copy the oops blindly.
2857   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2858   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2859                        (HeapWord*)&buf[0],
2860                        max_locals);
2861 
2862   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2863   int i = max_locals;
2864   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2865        kptr2 < fr.interpreter_frame_monitor_begin();
2866        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2867     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2868       BasicLock *lock = kptr2->lock();
2869       // Inflate so the displaced header becomes position-independent
2870       if (lock->displaced_header()->is_unlocked())
2871         ObjectSynchronizer::inflate_helper(kptr2->obj());
2872       // Now the displaced header is free to move
2873       buf[i++] = (intptr_t)lock->displaced_header();
2874       buf[i++] = (intptr_t)kptr2->obj();
2875     }
2876   }
2877   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2878 
2879   return buf;
2880 JRT_END
2881 
2882 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2883   FREE_C_HEAP_ARRAY(intptr_t,buf);
2884 JRT_END
2885 
2886 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2887   AdapterHandlerTableIterator iter(_adapters);
2888   while (iter.has_next()) {
2889     AdapterHandlerEntry* a = iter.next();
2890     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2891   }
2892   return false;
2893 }
2894 
2895 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2896   AdapterHandlerTableIterator iter(_adapters);
2897   while (iter.has_next()) {
2898     AdapterHandlerEntry* a = iter.next();
2899     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2900       st->print("Adapter for signature: ");
2901       st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2902                    a->fingerprint()->as_string(),
2903                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2904 
2905       return;
2906     }
2907   }
2908   assert(false, "Should have found handler");
2909 }
2910 
2911 #ifndef PRODUCT
2912 
2913 void AdapterHandlerLibrary::print_statistics() {
2914   _adapters->print_statistics();
2915 }
2916 
2917 #endif /* PRODUCT */