1 /* 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/scopeDesc.hpp" 30 #include "code/vtableStubs.hpp" 31 #include "compiler/abstractCompiler.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compilerOracle.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "interpreter/interpreterRuntime.hpp" 36 #include "memory/gcLocker.inline.hpp" 37 #include "memory/universe.inline.hpp" 38 #include "oops/oop.inline.hpp" 39 #include "prims/forte.hpp" 40 #include "prims/jvmtiExport.hpp" 41 #include "prims/jvmtiRedefineClassesTrace.hpp" 42 #include "prims/methodHandles.hpp" 43 #include "prims/nativeLookup.hpp" 44 #include "runtime/arguments.hpp" 45 #include "runtime/biasedLocking.hpp" 46 #include "runtime/handles.inline.hpp" 47 #include "runtime/init.hpp" 48 #include "runtime/interfaceSupport.hpp" 49 #include "runtime/javaCalls.hpp" 50 #include "runtime/sharedRuntime.hpp" 51 #include "runtime/stubRoutines.hpp" 52 #include "runtime/vframe.hpp" 53 #include "runtime/vframeArray.hpp" 54 #include "utilities/copy.hpp" 55 #include "utilities/dtrace.hpp" 56 #include "utilities/events.hpp" 57 #include "utilities/hashtable.inline.hpp" 58 #include "utilities/xmlstream.hpp" 59 #ifdef TARGET_ARCH_x86 60 # include "nativeInst_x86.hpp" 61 # include "vmreg_x86.inline.hpp" 62 #endif 63 #ifdef TARGET_ARCH_sparc 64 # include "nativeInst_sparc.hpp" 65 # include "vmreg_sparc.inline.hpp" 66 #endif 67 #ifdef TARGET_ARCH_zero 68 # include "nativeInst_zero.hpp" 69 # include "vmreg_zero.inline.hpp" 70 #endif 71 #ifdef TARGET_ARCH_arm 72 # include "nativeInst_arm.hpp" 73 # include "vmreg_arm.inline.hpp" 74 #endif 75 #ifdef TARGET_ARCH_ppc 76 # include "nativeInst_ppc.hpp" 77 # include "vmreg_ppc.inline.hpp" 78 #endif 79 #ifdef COMPILER1 80 #include "c1/c1_Runtime1.hpp" 81 #endif 82 83 // Shared stub locations 84 RuntimeStub* SharedRuntime::_wrong_method_blob; 85 RuntimeStub* SharedRuntime::_ic_miss_blob; 86 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; 87 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; 88 RuntimeStub* SharedRuntime::_resolve_static_call_blob; 89 90 DeoptimizationBlob* SharedRuntime::_deopt_blob; 91 RicochetBlob* SharedRuntime::_ricochet_blob; 92 93 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; 94 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; 95 96 #ifdef COMPILER2 97 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; 98 #endif // COMPILER2 99 100 101 //----------------------------generate_stubs----------------------------------- 102 void SharedRuntime::generate_stubs() { 103 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); 104 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); 105 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); 106 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); 107 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); 108 109 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false); 110 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true); 111 112 generate_ricochet_blob(); 113 generate_deopt_blob(); 114 115 #ifdef COMPILER2 116 generate_uncommon_trap_blob(); 117 #endif // COMPILER2 118 } 119 120 //----------------------------generate_ricochet_blob--------------------------- 121 void SharedRuntime::generate_ricochet_blob() { 122 if (!EnableInvokeDynamic) return; // leave it as a null 123 124 #ifndef TARGET_ARCH_NYI_6939861 125 // allocate space for the code 126 ResourceMark rm; 127 // setup code generation tools 128 CodeBuffer buffer("ricochet_blob", 256 LP64_ONLY(+ 256), 256); // XXX x86 LP64L: 512, 512 129 MacroAssembler* masm = new MacroAssembler(&buffer); 130 131 int bounce_offset = -1, exception_offset = -1, frame_size_in_words = -1; 132 MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &bounce_offset, &exception_offset, &frame_size_in_words); 133 134 // ------------- 135 // make sure all code is generated 136 masm->flush(); 137 138 // failed to generate? 139 if (bounce_offset < 0 || exception_offset < 0 || frame_size_in_words < 0) { 140 assert(false, "bad ricochet blob"); 141 return; 142 } 143 144 _ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words); 145 #endif 146 } 147 148 149 #include <math.h> 150 151 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t); 152 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int, 153 char*, int, char*, int, char*, int); 154 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int, 155 char*, int, char*, int, char*, int); 156 157 // Implementation of SharedRuntime 158 159 #ifndef PRODUCT 160 // For statistics 161 int SharedRuntime::_ic_miss_ctr = 0; 162 int SharedRuntime::_wrong_method_ctr = 0; 163 int SharedRuntime::_resolve_static_ctr = 0; 164 int SharedRuntime::_resolve_virtual_ctr = 0; 165 int SharedRuntime::_resolve_opt_virtual_ctr = 0; 166 int SharedRuntime::_implicit_null_throws = 0; 167 int SharedRuntime::_implicit_div0_throws = 0; 168 int SharedRuntime::_throw_null_ctr = 0; 169 170 int SharedRuntime::_nof_normal_calls = 0; 171 int SharedRuntime::_nof_optimized_calls = 0; 172 int SharedRuntime::_nof_inlined_calls = 0; 173 int SharedRuntime::_nof_megamorphic_calls = 0; 174 int SharedRuntime::_nof_static_calls = 0; 175 int SharedRuntime::_nof_inlined_static_calls = 0; 176 int SharedRuntime::_nof_interface_calls = 0; 177 int SharedRuntime::_nof_optimized_interface_calls = 0; 178 int SharedRuntime::_nof_inlined_interface_calls = 0; 179 int SharedRuntime::_nof_megamorphic_interface_calls = 0; 180 int SharedRuntime::_nof_removable_exceptions = 0; 181 182 int SharedRuntime::_new_instance_ctr=0; 183 int SharedRuntime::_new_array_ctr=0; 184 int SharedRuntime::_multi1_ctr=0; 185 int SharedRuntime::_multi2_ctr=0; 186 int SharedRuntime::_multi3_ctr=0; 187 int SharedRuntime::_multi4_ctr=0; 188 int SharedRuntime::_multi5_ctr=0; 189 int SharedRuntime::_mon_enter_stub_ctr=0; 190 int SharedRuntime::_mon_exit_stub_ctr=0; 191 int SharedRuntime::_mon_enter_ctr=0; 192 int SharedRuntime::_mon_exit_ctr=0; 193 int SharedRuntime::_partial_subtype_ctr=0; 194 int SharedRuntime::_jbyte_array_copy_ctr=0; 195 int SharedRuntime::_jshort_array_copy_ctr=0; 196 int SharedRuntime::_jint_array_copy_ctr=0; 197 int SharedRuntime::_jlong_array_copy_ctr=0; 198 int SharedRuntime::_oop_array_copy_ctr=0; 199 int SharedRuntime::_checkcast_array_copy_ctr=0; 200 int SharedRuntime::_unsafe_array_copy_ctr=0; 201 int SharedRuntime::_generic_array_copy_ctr=0; 202 int SharedRuntime::_slow_array_copy_ctr=0; 203 int SharedRuntime::_find_handler_ctr=0; 204 int SharedRuntime::_rethrow_ctr=0; 205 206 int SharedRuntime::_ICmiss_index = 0; 207 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 208 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 209 210 211 void SharedRuntime::trace_ic_miss(address at) { 212 for (int i = 0; i < _ICmiss_index; i++) { 213 if (_ICmiss_at[i] == at) { 214 _ICmiss_count[i]++; 215 return; 216 } 217 } 218 int index = _ICmiss_index++; 219 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 220 _ICmiss_at[index] = at; 221 _ICmiss_count[index] = 1; 222 } 223 224 void SharedRuntime::print_ic_miss_histogram() { 225 if (ICMissHistogram) { 226 tty->print_cr ("IC Miss Histogram:"); 227 int tot_misses = 0; 228 for (int i = 0; i < _ICmiss_index; i++) { 229 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]); 230 tot_misses += _ICmiss_count[i]; 231 } 232 tty->print_cr ("Total IC misses: %7d", tot_misses); 233 } 234 } 235 #endif // PRODUCT 236 237 #ifndef SERIALGC 238 239 // G1 write-barrier pre: executed before a pointer store. 240 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread)) 241 if (orig == NULL) { 242 assert(false, "should be optimized out"); 243 return; 244 } 245 assert(orig->is_oop(true /* ignore mark word */), "Error"); 246 // store the original value that was in the field reference 247 thread->satb_mark_queue().enqueue(orig); 248 JRT_END 249 250 // G1 write-barrier post: executed after a pointer store. 251 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread)) 252 thread->dirty_card_queue().enqueue(card_addr); 253 JRT_END 254 255 #endif // !SERIALGC 256 257 258 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 259 return x * y; 260 JRT_END 261 262 263 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 264 if (x == min_jlong && y == CONST64(-1)) { 265 return x; 266 } else { 267 return x / y; 268 } 269 JRT_END 270 271 272 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 273 if (x == min_jlong && y == CONST64(-1)) { 274 return 0; 275 } else { 276 return x % y; 277 } 278 JRT_END 279 280 281 const juint float_sign_mask = 0x7FFFFFFF; 282 const juint float_infinity = 0x7F800000; 283 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 284 const julong double_infinity = CONST64(0x7FF0000000000000); 285 286 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 287 #ifdef _WIN64 288 // 64-bit Windows on amd64 returns the wrong values for 289 // infinity operands. 290 union { jfloat f; juint i; } xbits, ybits; 291 xbits.f = x; 292 ybits.f = y; 293 // x Mod Infinity == x unless x is infinity 294 if ( ((xbits.i & float_sign_mask) != float_infinity) && 295 ((ybits.i & float_sign_mask) == float_infinity) ) { 296 return x; 297 } 298 #endif 299 return ((jfloat)fmod((double)x,(double)y)); 300 JRT_END 301 302 303 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 304 #ifdef _WIN64 305 union { jdouble d; julong l; } xbits, ybits; 306 xbits.d = x; 307 ybits.d = y; 308 // x Mod Infinity == x unless x is infinity 309 if ( ((xbits.l & double_sign_mask) != double_infinity) && 310 ((ybits.l & double_sign_mask) == double_infinity) ) { 311 return x; 312 } 313 #endif 314 return ((jdouble)fmod((double)x,(double)y)); 315 JRT_END 316 317 #ifdef __SOFTFP__ 318 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 319 return x + y; 320 JRT_END 321 322 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 323 return x - y; 324 JRT_END 325 326 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 327 return x * y; 328 JRT_END 329 330 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 331 return x / y; 332 JRT_END 333 334 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 335 return x + y; 336 JRT_END 337 338 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 339 return x - y; 340 JRT_END 341 342 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 343 return x * y; 344 JRT_END 345 346 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 347 return x / y; 348 JRT_END 349 350 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 351 return (jfloat)x; 352 JRT_END 353 354 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 355 return (jdouble)x; 356 JRT_END 357 358 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 359 return (jdouble)x; 360 JRT_END 361 362 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 363 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 364 JRT_END 365 366 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 367 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 368 JRT_END 369 370 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 371 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 372 JRT_END 373 374 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 375 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 376 JRT_END 377 378 // Functions to return the opposite of the aeabi functions for nan. 379 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 380 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 381 JRT_END 382 383 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 384 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 385 JRT_END 386 387 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 388 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 389 JRT_END 390 391 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 392 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 393 JRT_END 394 395 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 396 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 397 JRT_END 398 399 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 400 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 401 JRT_END 402 403 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 404 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 405 JRT_END 406 407 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 408 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 409 JRT_END 410 411 // Intrinsics make gcc generate code for these. 412 float SharedRuntime::fneg(float f) { 413 return -f; 414 } 415 416 double SharedRuntime::dneg(double f) { 417 return -f; 418 } 419 420 #endif // __SOFTFP__ 421 422 #if defined(__SOFTFP__) || defined(E500V2) 423 // Intrinsics make gcc generate code for these. 424 double SharedRuntime::dabs(double f) { 425 return (f <= (double)0.0) ? (double)0.0 - f : f; 426 } 427 428 #endif 429 430 #if defined(__SOFTFP__) || defined(PPC) 431 double SharedRuntime::dsqrt(double f) { 432 return sqrt(f); 433 } 434 #endif 435 436 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 437 if (g_isnan(x)) 438 return 0; 439 if (x >= (jfloat) max_jint) 440 return max_jint; 441 if (x <= (jfloat) min_jint) 442 return min_jint; 443 return (jint) x; 444 JRT_END 445 446 447 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 448 if (g_isnan(x)) 449 return 0; 450 if (x >= (jfloat) max_jlong) 451 return max_jlong; 452 if (x <= (jfloat) min_jlong) 453 return min_jlong; 454 return (jlong) x; 455 JRT_END 456 457 458 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 459 if (g_isnan(x)) 460 return 0; 461 if (x >= (jdouble) max_jint) 462 return max_jint; 463 if (x <= (jdouble) min_jint) 464 return min_jint; 465 return (jint) x; 466 JRT_END 467 468 469 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 470 if (g_isnan(x)) 471 return 0; 472 if (x >= (jdouble) max_jlong) 473 return max_jlong; 474 if (x <= (jdouble) min_jlong) 475 return min_jlong; 476 return (jlong) x; 477 JRT_END 478 479 480 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 481 return (jfloat)x; 482 JRT_END 483 484 485 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 486 return (jfloat)x; 487 JRT_END 488 489 490 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 491 return (jdouble)x; 492 JRT_END 493 494 // Exception handling accross interpreter/compiler boundaries 495 // 496 // exception_handler_for_return_address(...) returns the continuation address. 497 // The continuation address is the entry point of the exception handler of the 498 // previous frame depending on the return address. 499 500 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) { 501 assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address)); 502 503 // Reset method handle flag. 504 thread->set_is_method_handle_return(false); 505 506 // The fastest case first 507 CodeBlob* blob = CodeCache::find_blob(return_address); 508 nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL; 509 if (nm != NULL) { 510 // Set flag if return address is a method handle call site. 511 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 512 // native nmethods don't have exception handlers 513 assert(!nm->is_native_method(), "no exception handler"); 514 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 515 if (nm->is_deopt_pc(return_address)) { 516 return SharedRuntime::deopt_blob()->unpack_with_exception(); 517 } else { 518 return nm->exception_begin(); 519 } 520 } 521 522 // Entry code 523 if (StubRoutines::returns_to_call_stub(return_address)) { 524 return StubRoutines::catch_exception_entry(); 525 } 526 // Interpreted code 527 if (Interpreter::contains(return_address)) { 528 return Interpreter::rethrow_exception_entry(); 529 } 530 // Ricochet frame unwind code 531 if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) { 532 return SharedRuntime::ricochet_blob()->exception_addr(); 533 } 534 535 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub"); 536 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!"); 537 538 #ifndef PRODUCT 539 { ResourceMark rm; 540 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address); 541 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 542 tty->print_cr("b) other problem"); 543 } 544 #endif // PRODUCT 545 546 ShouldNotReachHere(); 547 return NULL; 548 } 549 550 551 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address)) 552 return raw_exception_handler_for_return_address(thread, return_address); 553 JRT_END 554 555 556 address SharedRuntime::get_poll_stub(address pc) { 557 address stub; 558 // Look up the code blob 559 CodeBlob *cb = CodeCache::find_blob(pc); 560 561 // Should be an nmethod 562 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" ); 563 564 // Look up the relocation information 565 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc), 566 "safepoint polling: type must be poll" ); 567 568 assert( ((NativeInstruction*)pc)->is_safepoint_poll(), 569 "Only polling locations are used for safepoint"); 570 571 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc); 572 if (at_poll_return) { 573 assert(SharedRuntime::polling_page_return_handler_blob() != NULL, 574 "polling page return stub not created yet"); 575 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 576 } else { 577 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL, 578 "polling page safepoint stub not created yet"); 579 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 580 } 581 #ifndef PRODUCT 582 if( TraceSafepoint ) { 583 char buf[256]; 584 jio_snprintf(buf, sizeof(buf), 585 "... found polling page %s exception at pc = " 586 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 587 at_poll_return ? "return" : "loop", 588 (intptr_t)pc, (intptr_t)stub); 589 tty->print_raw_cr(buf); 590 } 591 #endif // PRODUCT 592 return stub; 593 } 594 595 596 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) { 597 assert(caller.is_interpreted_frame(), ""); 598 int args_size = ArgumentSizeComputer(sig).size() + 1; 599 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack"); 600 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1); 601 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop"); 602 return result; 603 } 604 605 606 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) { 607 if (JvmtiExport::can_post_on_exceptions()) { 608 vframeStream vfst(thread, true); 609 methodHandle method = methodHandle(thread, vfst.method()); 610 address bcp = method()->bcp_from(vfst.bci()); 611 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception()); 612 } 613 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception); 614 } 615 616 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) { 617 Handle h_exception = Exceptions::new_exception(thread, name, message); 618 throw_and_post_jvmti_exception(thread, h_exception); 619 } 620 621 // The interpreter code to call this tracing function is only 622 // called/generated when TraceRedefineClasses has the right bits 623 // set. Since obsolete methods are never compiled, we don't have 624 // to modify the compilers to generate calls to this function. 625 // 626 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 627 JavaThread* thread, methodOopDesc* method)) 628 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call"); 629 630 if (method->is_obsolete()) { 631 // We are calling an obsolete method, but this is not necessarily 632 // an error. Our method could have been redefined just after we 633 // fetched the methodOop from the constant pool. 634 635 // RC_TRACE macro has an embedded ResourceMark 636 RC_TRACE_WITH_THREAD(0x00001000, thread, 637 ("calling obsolete method '%s'", 638 method->name_and_sig_as_C_string())); 639 if (RC_TRACE_ENABLED(0x00002000)) { 640 // this option is provided to debug calls to obsolete methods 641 guarantee(false, "faulting at call to an obsolete method."); 642 } 643 } 644 return 0; 645 JRT_END 646 647 // ret_pc points into caller; we are returning caller's exception handler 648 // for given exception 649 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 650 bool force_unwind, bool top_frame_only) { 651 assert(nm != NULL, "must exist"); 652 ResourceMark rm; 653 654 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 655 // determine handler bci, if any 656 EXCEPTION_MARK; 657 658 int handler_bci = -1; 659 int scope_depth = 0; 660 if (!force_unwind) { 661 int bci = sd->bci(); 662 do { 663 bool skip_scope_increment = false; 664 // exception handler lookup 665 KlassHandle ek (THREAD, exception->klass()); 666 handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD); 667 if (HAS_PENDING_EXCEPTION) { 668 // We threw an exception while trying to find the exception handler. 669 // Transfer the new exception to the exception handle which will 670 // be set into thread local storage, and do another lookup for an 671 // exception handler for this exception, this time starting at the 672 // BCI of the exception handler which caused the exception to be 673 // thrown (bugs 4307310 and 4546590). Set "exception" reference 674 // argument to ensure that the correct exception is thrown (4870175). 675 exception = Handle(THREAD, PENDING_EXCEPTION); 676 CLEAR_PENDING_EXCEPTION; 677 if (handler_bci >= 0) { 678 bci = handler_bci; 679 handler_bci = -1; 680 skip_scope_increment = true; 681 } 682 } 683 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 684 sd = sd->sender(); 685 if (sd != NULL) { 686 bci = sd->bci(); 687 } 688 ++scope_depth; 689 } 690 } while (!top_frame_only && handler_bci < 0 && sd != NULL); 691 } 692 693 // found handling method => lookup exception handler 694 int catch_pco = ret_pc - nm->code_begin(); 695 696 ExceptionHandlerTable table(nm); 697 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 698 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) { 699 // Allow abbreviated catch tables. The idea is to allow a method 700 // to materialize its exceptions without committing to the exact 701 // routing of exceptions. In particular this is needed for adding 702 // a synthethic handler to unlock monitors when inlining 703 // synchonized methods since the unlock path isn't represented in 704 // the bytecodes. 705 t = table.entry_for(catch_pco, -1, 0); 706 } 707 708 #ifdef COMPILER1 709 if (t == NULL && nm->is_compiled_by_c1()) { 710 assert(nm->unwind_handler_begin() != NULL, ""); 711 return nm->unwind_handler_begin(); 712 } 713 #endif 714 715 if (t == NULL) { 716 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci); 717 tty->print_cr(" Exception:"); 718 exception->print(); 719 tty->cr(); 720 tty->print_cr(" Compiled exception table :"); 721 table.print(); 722 nm->print_code(); 723 guarantee(false, "missing exception handler"); 724 return NULL; 725 } 726 727 return nm->code_begin() + t->pco(); 728 } 729 730 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread)) 731 // These errors occur only at call sites 732 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError()); 733 JRT_END 734 735 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) 736 // These errors occur only at call sites 737 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 738 JRT_END 739 740 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread)) 741 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 742 JRT_END 743 744 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread)) 745 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 746 JRT_END 747 748 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread)) 749 // This entry point is effectively only used for NullPointerExceptions which occur at inline 750 // cache sites (when the callee activation is not yet set up) so we are at a call site 751 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 752 JRT_END 753 754 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread)) 755 // We avoid using the normal exception construction in this case because 756 // it performs an upcall to Java, and we're already out of stack space. 757 klassOop k = SystemDictionary::StackOverflowError_klass(); 758 oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK); 759 Handle exception (thread, exception_oop); 760 if (StackTraceInThrowable) { 761 java_lang_Throwable::fill_in_stack_trace(exception); 762 } 763 throw_and_post_jvmti_exception(thread, exception); 764 JRT_END 765 766 JRT_ENTRY(void, SharedRuntime::throw_WrongMethodTypeException(JavaThread* thread, oopDesc* required, oopDesc* actual)) 767 assert(thread == JavaThread::current() && required->is_oop() && actual->is_oop(), "bad args"); 768 ResourceMark rm; 769 char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual); 770 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_invoke_WrongMethodTypeException(), message); 771 JRT_END 772 773 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread, 774 address pc, 775 SharedRuntime::ImplicitExceptionKind exception_kind) 776 { 777 address target_pc = NULL; 778 779 if (Interpreter::contains(pc)) { 780 #ifdef CC_INTERP 781 // C++ interpreter doesn't throw implicit exceptions 782 ShouldNotReachHere(); 783 #else 784 switch (exception_kind) { 785 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 786 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 787 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 788 default: ShouldNotReachHere(); 789 } 790 #endif // !CC_INTERP 791 } else { 792 switch (exception_kind) { 793 case STACK_OVERFLOW: { 794 // Stack overflow only occurs upon frame setup; the callee is 795 // going to be unwound. Dispatch to a shared runtime stub 796 // which will cause the StackOverflowError to be fabricated 797 // and processed. 798 // For stack overflow in deoptimization blob, cleanup thread. 799 if (thread->deopt_mark() != NULL) { 800 Deoptimization::cleanup_deopt_info(thread, NULL); 801 } 802 return StubRoutines::throw_StackOverflowError_entry(); 803 } 804 805 case IMPLICIT_NULL: { 806 if (VtableStubs::contains(pc)) { 807 // We haven't yet entered the callee frame. Fabricate an 808 // exception and begin dispatching it in the caller. Since 809 // the caller was at a call site, it's safe to destroy all 810 // caller-saved registers, as these entry points do. 811 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 812 813 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error. 814 if (vt_stub == NULL) return NULL; 815 816 if (vt_stub->is_abstract_method_error(pc)) { 817 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 818 return StubRoutines::throw_AbstractMethodError_entry(); 819 } else { 820 return StubRoutines::throw_NullPointerException_at_call_entry(); 821 } 822 } else { 823 CodeBlob* cb = CodeCache::find_blob(pc); 824 825 // If code blob is NULL, then return NULL to signal handler to report the SEGV error. 826 if (cb == NULL) return NULL; 827 828 // Exception happened in CodeCache. Must be either: 829 // 1. Inline-cache check in C2I handler blob, 830 // 2. Inline-cache check in nmethod, or 831 // 3. Implict null exception in nmethod 832 833 if (!cb->is_nmethod()) { 834 guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(), 835 "exception happened outside interpreter, nmethods and vtable stubs (1)"); 836 // There is no handler here, so we will simply unwind. 837 return StubRoutines::throw_NullPointerException_at_call_entry(); 838 } 839 840 // Otherwise, it's an nmethod. Consult its exception handlers. 841 nmethod* nm = (nmethod*)cb; 842 if (nm->inlinecache_check_contains(pc)) { 843 // exception happened inside inline-cache check code 844 // => the nmethod is not yet active (i.e., the frame 845 // is not set up yet) => use return address pushed by 846 // caller => don't push another return address 847 return StubRoutines::throw_NullPointerException_at_call_entry(); 848 } 849 850 #ifndef PRODUCT 851 _implicit_null_throws++; 852 #endif 853 target_pc = nm->continuation_for_implicit_exception(pc); 854 // If there's an unexpected fault, target_pc might be NULL, 855 // in which case we want to fall through into the normal 856 // error handling code. 857 } 858 859 break; // fall through 860 } 861 862 863 case IMPLICIT_DIVIDE_BY_ZERO: { 864 nmethod* nm = CodeCache::find_nmethod(pc); 865 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions"); 866 #ifndef PRODUCT 867 _implicit_div0_throws++; 868 #endif 869 target_pc = nm->continuation_for_implicit_exception(pc); 870 // If there's an unexpected fault, target_pc might be NULL, 871 // in which case we want to fall through into the normal 872 // error handling code. 873 break; // fall through 874 } 875 876 default: ShouldNotReachHere(); 877 } 878 879 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 880 881 // for AbortVMOnException flag 882 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException")); 883 if (exception_kind == IMPLICIT_NULL) { 884 Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc); 885 } else { 886 Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc); 887 } 888 return target_pc; 889 } 890 891 ShouldNotReachHere(); 892 return NULL; 893 } 894 895 896 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...)) 897 { 898 THROW(vmSymbols::java_lang_UnsatisfiedLinkError()); 899 } 900 JNI_END 901 902 903 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 904 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 905 } 906 907 908 #ifndef PRODUCT 909 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2)) 910 const frame f = thread->last_frame(); 911 assert(f.is_interpreted_frame(), "must be an interpreted frame"); 912 #ifndef PRODUCT 913 methodHandle mh(THREAD, f.interpreter_frame_method()); 914 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2); 915 #endif // !PRODUCT 916 return preserve_this_value; 917 JRT_END 918 #endif // !PRODUCT 919 920 921 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts)) 922 os::yield_all(attempts); 923 JRT_END 924 925 926 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) 927 assert(obj->is_oop(), "must be a valid oop"); 928 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise"); 929 instanceKlass::register_finalizer(instanceOop(obj), CHECK); 930 JRT_END 931 932 933 jlong SharedRuntime::get_java_tid(Thread* thread) { 934 if (thread != NULL) { 935 if (thread->is_Java_thread()) { 936 oop obj = ((JavaThread*)thread)->threadObj(); 937 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj); 938 } 939 } 940 return 0; 941 } 942 943 /** 944 * This function ought to be a void function, but cannot be because 945 * it gets turned into a tail-call on sparc, which runs into dtrace bug 946 * 6254741. Once that is fixed we can remove the dummy return value. 947 */ 948 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 949 return dtrace_object_alloc_base(Thread::current(), o); 950 } 951 952 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) { 953 assert(DTraceAllocProbes, "wrong call"); 954 Klass* klass = o->blueprint(); 955 int size = o->size(); 956 Symbol* name = klass->name(); 957 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread), 958 name->bytes(), name->utf8_length(), size * HeapWordSize); 959 return 0; 960 } 961 962 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 963 JavaThread* thread, methodOopDesc* method)) 964 assert(DTraceMethodProbes, "wrong call"); 965 Symbol* kname = method->klass_name(); 966 Symbol* name = method->name(); 967 Symbol* sig = method->signature(); 968 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread), 969 kname->bytes(), kname->utf8_length(), 970 name->bytes(), name->utf8_length(), 971 sig->bytes(), sig->utf8_length()); 972 return 0; 973 JRT_END 974 975 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 976 JavaThread* thread, methodOopDesc* method)) 977 assert(DTraceMethodProbes, "wrong call"); 978 Symbol* kname = method->klass_name(); 979 Symbol* name = method->name(); 980 Symbol* sig = method->signature(); 981 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread), 982 kname->bytes(), kname->utf8_length(), 983 name->bytes(), name->utf8_length(), 984 sig->bytes(), sig->utf8_length()); 985 return 0; 986 JRT_END 987 988 989 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 990 // for a call current in progress, i.e., arguments has been pushed on stack 991 // put callee has not been invoked yet. Used by: resolve virtual/static, 992 // vtable updates, etc. Caller frame must be compiled. 993 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 994 ResourceMark rm(THREAD); 995 996 // last java frame on stack (which includes native call frames) 997 vframeStream vfst(thread, true); // Do not skip and javaCalls 998 999 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle())); 1000 } 1001 1002 1003 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1004 // for a call current in progress, i.e., arguments has been pushed on stack 1005 // but callee has not been invoked yet. Caller frame must be compiled. 1006 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread, 1007 vframeStream& vfst, 1008 Bytecodes::Code& bc, 1009 CallInfo& callinfo, TRAPS) { 1010 Handle receiver; 1011 Handle nullHandle; //create a handy null handle for exception returns 1012 1013 assert(!vfst.at_end(), "Java frame must exist"); 1014 1015 // Find caller and bci from vframe 1016 methodHandle caller (THREAD, vfst.method()); 1017 int bci = vfst.bci(); 1018 1019 // Find bytecode 1020 Bytecode_invoke bytecode(caller, bci); 1021 bc = bytecode.java_code(); 1022 int bytecode_index = bytecode.index(); 1023 1024 // Find receiver for non-static call 1025 if (bc != Bytecodes::_invokestatic) { 1026 // This register map must be update since we need to find the receiver for 1027 // compiled frames. The receiver might be in a register. 1028 RegisterMap reg_map2(thread); 1029 frame stubFrame = thread->last_frame(); 1030 // Caller-frame is a compiled frame 1031 frame callerFrame = stubFrame.sender(®_map2); 1032 1033 methodHandle callee = bytecode.static_target(CHECK_(nullHandle)); 1034 if (callee.is_null()) { 1035 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1036 } 1037 // Retrieve from a compiled argument list 1038 receiver = Handle(THREAD, callerFrame.retrieve_receiver(®_map2)); 1039 1040 if (receiver.is_null()) { 1041 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1042 } 1043 } 1044 1045 // Resolve method. This is parameterized by bytecode. 1046 constantPoolHandle constants (THREAD, caller->constants()); 1047 assert (receiver.is_null() || receiver->is_oop(), "wrong receiver"); 1048 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle)); 1049 1050 #ifdef ASSERT 1051 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1052 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) { 1053 assert(receiver.not_null(), "should have thrown exception"); 1054 KlassHandle receiver_klass (THREAD, receiver->klass()); 1055 klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle)); 1056 // klass is already loaded 1057 KlassHandle static_receiver_klass (THREAD, rk); 1058 assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass"); 1059 if (receiver_klass->oop_is_instance()) { 1060 if (instanceKlass::cast(receiver_klass())->is_not_initialized()) { 1061 tty->print_cr("ERROR: Klass not yet initialized!!"); 1062 receiver_klass.print(); 1063 } 1064 assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized"); 1065 } 1066 } 1067 #endif 1068 1069 return receiver; 1070 } 1071 1072 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) { 1073 ResourceMark rm(THREAD); 1074 // We need first to check if any Java activations (compiled, interpreted) 1075 // exist on the stack since last JavaCall. If not, we need 1076 // to get the target method from the JavaCall wrapper. 1077 vframeStream vfst(thread, true); // Do not skip any javaCalls 1078 methodHandle callee_method; 1079 if (vfst.at_end()) { 1080 // No Java frames were found on stack since we did the JavaCall. 1081 // Hence the stack can only contain an entry_frame. We need to 1082 // find the target method from the stub frame. 1083 RegisterMap reg_map(thread, false); 1084 frame fr = thread->last_frame(); 1085 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1086 fr = fr.sender(®_map); 1087 assert(fr.is_entry_frame(), "must be"); 1088 // fr is now pointing to the entry frame. 1089 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method()); 1090 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??"); 1091 } else { 1092 Bytecodes::Code bc; 1093 CallInfo callinfo; 1094 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle())); 1095 callee_method = callinfo.selected_method(); 1096 } 1097 assert(callee_method()->is_method(), "must be"); 1098 return callee_method; 1099 } 1100 1101 // Resolves a call. 1102 methodHandle SharedRuntime::resolve_helper(JavaThread *thread, 1103 bool is_virtual, 1104 bool is_optimized, TRAPS) { 1105 methodHandle callee_method; 1106 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); 1107 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 1108 int retry_count = 0; 1109 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() && 1110 callee_method->method_holder() != SystemDictionary::Object_klass()) { 1111 // If has a pending exception then there is no need to re-try to 1112 // resolve this method. 1113 // If the method has been redefined, we need to try again. 1114 // Hack: we have no way to update the vtables of arrays, so don't 1115 // require that java.lang.Object has been updated. 1116 1117 // It is very unlikely that method is redefined more than 100 times 1118 // in the middle of resolve. If it is looping here more than 100 times 1119 // means then there could be a bug here. 1120 guarantee((retry_count++ < 100), 1121 "Could not resolve to latest version of redefined method"); 1122 // method is redefined in the middle of resolve so re-try. 1123 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); 1124 } 1125 } 1126 return callee_method; 1127 } 1128 1129 // Resolves a call. The compilers generate code for calls that go here 1130 // and are patched with the real destination of the call. 1131 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread, 1132 bool is_virtual, 1133 bool is_optimized, TRAPS) { 1134 1135 ResourceMark rm(thread); 1136 RegisterMap cbl_map(thread, false); 1137 frame caller_frame = thread->last_frame().sender(&cbl_map); 1138 1139 CodeBlob* caller_cb = caller_frame.cb(); 1140 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod"); 1141 nmethod* caller_nm = caller_cb->as_nmethod_or_null(); 1142 // make sure caller is not getting deoptimized 1143 // and removed before we are done with it. 1144 // CLEANUP - with lazy deopt shouldn't need this lock 1145 nmethodLocker caller_lock(caller_nm); 1146 1147 1148 // determine call info & receiver 1149 // note: a) receiver is NULL for static calls 1150 // b) an exception is thrown if receiver is NULL for non-static calls 1151 CallInfo call_info; 1152 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1153 Handle receiver = find_callee_info(thread, invoke_code, 1154 call_info, CHECK_(methodHandle())); 1155 methodHandle callee_method = call_info.selected_method(); 1156 1157 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) || 1158 ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode"); 1159 1160 #ifndef PRODUCT 1161 // tracing/debugging/statistics 1162 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1163 (is_virtual) ? (&_resolve_virtual_ctr) : 1164 (&_resolve_static_ctr); 1165 Atomic::inc(addr); 1166 1167 if (TraceCallFixup) { 1168 ResourceMark rm(thread); 1169 tty->print("resolving %s%s (%s) call to", 1170 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1171 Bytecodes::name(invoke_code)); 1172 callee_method->print_short_name(tty); 1173 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1174 } 1175 #endif 1176 1177 // JSR 292 1178 // If the resolved method is a MethodHandle invoke target the call 1179 // site must be a MethodHandle call site. 1180 if (callee_method->is_method_handle_invoke()) { 1181 assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site"); 1182 } 1183 1184 // Compute entry points. This might require generation of C2I converter 1185 // frames, so we cannot be holding any locks here. Furthermore, the 1186 // computation of the entry points is independent of patching the call. We 1187 // always return the entry-point, but we only patch the stub if the call has 1188 // not been deoptimized. Return values: For a virtual call this is an 1189 // (cached_oop, destination address) pair. For a static call/optimized 1190 // virtual this is just a destination address. 1191 1192 StaticCallInfo static_call_info; 1193 CompiledICInfo virtual_call_info; 1194 1195 // Make sure the callee nmethod does not get deoptimized and removed before 1196 // we are done patching the code. 1197 nmethod* callee_nm = callee_method->code(); 1198 nmethodLocker nl_callee(callee_nm); 1199 #ifdef ASSERT 1200 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below 1201 #endif 1202 1203 if (is_virtual) { 1204 assert(receiver.not_null(), "sanity check"); 1205 bool static_bound = call_info.resolved_method()->can_be_statically_bound(); 1206 KlassHandle h_klass(THREAD, receiver->klass()); 1207 CompiledIC::compute_monomorphic_entry(callee_method, h_klass, 1208 is_optimized, static_bound, virtual_call_info, 1209 CHECK_(methodHandle())); 1210 } else { 1211 // static call 1212 CompiledStaticCall::compute_entry(callee_method, static_call_info); 1213 } 1214 1215 // grab lock, check for deoptimization and potentially patch caller 1216 { 1217 MutexLocker ml_patch(CompiledIC_lock); 1218 1219 // Now that we are ready to patch if the methodOop was redefined then 1220 // don't update call site and let the caller retry. 1221 1222 if (!callee_method->is_old()) { 1223 #ifdef ASSERT 1224 // We must not try to patch to jump to an already unloaded method. 1225 if (dest_entry_point != 0) { 1226 assert(CodeCache::find_blob(dest_entry_point) != NULL, 1227 "should not unload nmethod while locked"); 1228 } 1229 #endif 1230 if (is_virtual) { 1231 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc()); 1232 if (inline_cache->is_clean()) { 1233 inline_cache->set_to_monomorphic(virtual_call_info); 1234 } 1235 } else { 1236 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc()); 1237 if (ssc->is_clean()) ssc->set(static_call_info); 1238 } 1239 } 1240 1241 } // unlock CompiledIC_lock 1242 1243 return callee_method; 1244 } 1245 1246 1247 // Inline caches exist only in compiled code 1248 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread)) 1249 #ifdef ASSERT 1250 RegisterMap reg_map(thread, false); 1251 frame stub_frame = thread->last_frame(); 1252 assert(stub_frame.is_runtime_frame(), "sanity check"); 1253 frame caller_frame = stub_frame.sender(®_map); 1254 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame"); 1255 assert(!caller_frame.is_ricochet_frame(), "unexpected frame"); 1256 #endif /* ASSERT */ 1257 1258 methodHandle callee_method; 1259 JRT_BLOCK 1260 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL); 1261 // Return methodOop through TLS 1262 thread->set_vm_result(callee_method()); 1263 JRT_BLOCK_END 1264 // return compiled code entry point after potential safepoints 1265 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1266 return callee_method->verified_code_entry(); 1267 JRT_END 1268 1269 1270 // Handle call site that has been made non-entrant 1271 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread)) 1272 // 6243940 We might end up in here if the callee is deoptimized 1273 // as we race to call it. We don't want to take a safepoint if 1274 // the caller was interpreted because the caller frame will look 1275 // interpreted to the stack walkers and arguments are now 1276 // "compiled" so it is much better to make this transition 1277 // invisible to the stack walking code. The i2c path will 1278 // place the callee method in the callee_target. It is stashed 1279 // there because if we try and find the callee by normal means a 1280 // safepoint is possible and have trouble gc'ing the compiled args. 1281 RegisterMap reg_map(thread, false); 1282 frame stub_frame = thread->last_frame(); 1283 assert(stub_frame.is_runtime_frame(), "sanity check"); 1284 frame caller_frame = stub_frame.sender(®_map); 1285 1286 // MethodHandle invokes don't have a CompiledIC and should always 1287 // simply redispatch to the callee_target. 1288 address sender_pc = caller_frame.pc(); 1289 CodeBlob* sender_cb = caller_frame.cb(); 1290 nmethod* sender_nm = sender_cb->as_nmethod_or_null(); 1291 bool is_mh_invoke_via_adapter = false; // Direct c2c call or via adapter? 1292 if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) { 1293 // If the callee_target is set, then we have come here via an i2c 1294 // adapter. 1295 methodOop callee = thread->callee_target(); 1296 if (callee != NULL) { 1297 assert(callee->is_method(), "sanity"); 1298 is_mh_invoke_via_adapter = true; 1299 } 1300 } 1301 1302 if (caller_frame.is_interpreted_frame() || 1303 caller_frame.is_entry_frame() || 1304 caller_frame.is_ricochet_frame() || 1305 is_mh_invoke_via_adapter) { 1306 methodOop callee = thread->callee_target(); 1307 guarantee(callee != NULL && callee->is_method(), "bad handshake"); 1308 thread->set_vm_result(callee); 1309 thread->set_callee_target(NULL); 1310 return callee->get_c2i_entry(); 1311 } 1312 1313 // Must be compiled to compiled path which is safe to stackwalk 1314 methodHandle callee_method; 1315 JRT_BLOCK 1316 // Force resolving of caller (if we called from compiled frame) 1317 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL); 1318 thread->set_vm_result(callee_method()); 1319 JRT_BLOCK_END 1320 // return compiled code entry point after potential safepoints 1321 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1322 return callee_method->verified_code_entry(); 1323 JRT_END 1324 1325 1326 // resolve a static call and patch code 1327 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread )) 1328 methodHandle callee_method; 1329 JRT_BLOCK 1330 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL); 1331 thread->set_vm_result(callee_method()); 1332 JRT_BLOCK_END 1333 // return compiled code entry point after potential safepoints 1334 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1335 return callee_method->verified_code_entry(); 1336 JRT_END 1337 1338 1339 // resolve virtual call and update inline cache to monomorphic 1340 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread )) 1341 methodHandle callee_method; 1342 JRT_BLOCK 1343 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL); 1344 thread->set_vm_result(callee_method()); 1345 JRT_BLOCK_END 1346 // return compiled code entry point after potential safepoints 1347 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1348 return callee_method->verified_code_entry(); 1349 JRT_END 1350 1351 1352 // Resolve a virtual call that can be statically bound (e.g., always 1353 // monomorphic, so it has no inline cache). Patch code to resolved target. 1354 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread)) 1355 methodHandle callee_method; 1356 JRT_BLOCK 1357 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL); 1358 thread->set_vm_result(callee_method()); 1359 JRT_BLOCK_END 1360 // return compiled code entry point after potential safepoints 1361 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1362 return callee_method->verified_code_entry(); 1363 JRT_END 1364 1365 1366 1367 1368 1369 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) { 1370 ResourceMark rm(thread); 1371 CallInfo call_info; 1372 Bytecodes::Code bc; 1373 1374 // receiver is NULL for static calls. An exception is thrown for NULL 1375 // receivers for non-static calls 1376 Handle receiver = find_callee_info(thread, bc, call_info, 1377 CHECK_(methodHandle())); 1378 // Compiler1 can produce virtual call sites that can actually be statically bound 1379 // If we fell thru to below we would think that the site was going megamorphic 1380 // when in fact the site can never miss. Worse because we'd think it was megamorphic 1381 // we'd try and do a vtable dispatch however methods that can be statically bound 1382 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a 1383 // reresolution of the call site (as if we did a handle_wrong_method and not an 1384 // plain ic_miss) and the site will be converted to an optimized virtual call site 1385 // never to miss again. I don't believe C2 will produce code like this but if it 1386 // did this would still be the correct thing to do for it too, hence no ifdef. 1387 // 1388 if (call_info.resolved_method()->can_be_statically_bound()) { 1389 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle())); 1390 if (TraceCallFixup) { 1391 RegisterMap reg_map(thread, false); 1392 frame caller_frame = thread->last_frame().sender(®_map); 1393 ResourceMark rm(thread); 1394 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc)); 1395 callee_method->print_short_name(tty); 1396 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc()); 1397 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1398 } 1399 return callee_method; 1400 } 1401 1402 methodHandle callee_method = call_info.selected_method(); 1403 1404 bool should_be_mono = false; 1405 1406 #ifndef PRODUCT 1407 Atomic::inc(&_ic_miss_ctr); 1408 1409 // Statistics & Tracing 1410 if (TraceCallFixup) { 1411 ResourceMark rm(thread); 1412 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1413 callee_method->print_short_name(tty); 1414 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1415 } 1416 1417 if (ICMissHistogram) { 1418 MutexLocker m(VMStatistic_lock); 1419 RegisterMap reg_map(thread, false); 1420 frame f = thread->last_frame().real_sender(®_map);// skip runtime stub 1421 // produce statistics under the lock 1422 trace_ic_miss(f.pc()); 1423 } 1424 #endif 1425 1426 // install an event collector so that when a vtable stub is created the 1427 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1428 // event can't be posted when the stub is created as locks are held 1429 // - instead the event will be deferred until the event collector goes 1430 // out of scope. 1431 JvmtiDynamicCodeEventCollector event_collector; 1432 1433 // Update inline cache to megamorphic. Skip update if caller has been 1434 // made non-entrant or we are called from interpreted. 1435 { MutexLocker ml_patch (CompiledIC_lock); 1436 RegisterMap reg_map(thread, false); 1437 frame caller_frame = thread->last_frame().sender(®_map); 1438 CodeBlob* cb = caller_frame.cb(); 1439 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) { 1440 // Not a non-entrant nmethod, so find inline_cache 1441 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc()); 1442 bool should_be_mono = false; 1443 if (inline_cache->is_optimized()) { 1444 if (TraceCallFixup) { 1445 ResourceMark rm(thread); 1446 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc)); 1447 callee_method->print_short_name(tty); 1448 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1449 } 1450 should_be_mono = true; 1451 } else { 1452 compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop(); 1453 if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) { 1454 1455 if (receiver()->klass() == ic_oop->holder_klass()) { 1456 // This isn't a real miss. We must have seen that compiled code 1457 // is now available and we want the call site converted to a 1458 // monomorphic compiled call site. 1459 // We can't assert for callee_method->code() != NULL because it 1460 // could have been deoptimized in the meantime 1461 if (TraceCallFixup) { 1462 ResourceMark rm(thread); 1463 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc)); 1464 callee_method->print_short_name(tty); 1465 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1466 } 1467 should_be_mono = true; 1468 } 1469 } 1470 } 1471 1472 if (should_be_mono) { 1473 1474 // We have a path that was monomorphic but was going interpreted 1475 // and now we have (or had) a compiled entry. We correct the IC 1476 // by using a new icBuffer. 1477 CompiledICInfo info; 1478 KlassHandle receiver_klass(THREAD, receiver()->klass()); 1479 inline_cache->compute_monomorphic_entry(callee_method, 1480 receiver_klass, 1481 inline_cache->is_optimized(), 1482 false, 1483 info, CHECK_(methodHandle())); 1484 inline_cache->set_to_monomorphic(info); 1485 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) { 1486 // Change to megamorphic 1487 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle())); 1488 } else { 1489 // Either clean or megamorphic 1490 } 1491 } 1492 } // Release CompiledIC_lock 1493 1494 return callee_method; 1495 } 1496 1497 // 1498 // Resets a call-site in compiled code so it will get resolved again. 1499 // This routines handles both virtual call sites, optimized virtual call 1500 // sites, and static call sites. Typically used to change a call sites 1501 // destination from compiled to interpreted. 1502 // 1503 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) { 1504 ResourceMark rm(thread); 1505 RegisterMap reg_map(thread, false); 1506 frame stub_frame = thread->last_frame(); 1507 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1508 frame caller = stub_frame.sender(®_map); 1509 1510 // Do nothing if the frame isn't a live compiled frame. 1511 // nmethod could be deoptimized by the time we get here 1512 // so no update to the caller is needed. 1513 1514 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) { 1515 1516 address pc = caller.pc(); 1517 Events::log("update call-site at pc " INTPTR_FORMAT, pc); 1518 1519 // Default call_addr is the location of the "basic" call. 1520 // Determine the address of the call we a reresolving. With 1521 // Inline Caches we will always find a recognizable call. 1522 // With Inline Caches disabled we may or may not find a 1523 // recognizable call. We will always find a call for static 1524 // calls and for optimized virtual calls. For vanilla virtual 1525 // calls it depends on the state of the UseInlineCaches switch. 1526 // 1527 // With Inline Caches disabled we can get here for a virtual call 1528 // for two reasons: 1529 // 1 - calling an abstract method. The vtable for abstract methods 1530 // will run us thru handle_wrong_method and we will eventually 1531 // end up in the interpreter to throw the ame. 1532 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1533 // call and between the time we fetch the entry address and 1534 // we jump to it the target gets deoptimized. Similar to 1 1535 // we will wind up in the interprter (thru a c2i with c2). 1536 // 1537 address call_addr = NULL; 1538 { 1539 // Get call instruction under lock because another thread may be 1540 // busy patching it. 1541 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); 1542 // Location of call instruction 1543 if (NativeCall::is_call_before(pc)) { 1544 NativeCall *ncall = nativeCall_before(pc); 1545 call_addr = ncall->instruction_address(); 1546 } 1547 } 1548 1549 // Check for static or virtual call 1550 bool is_static_call = false; 1551 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1552 // Make sure nmethod doesn't get deoptimized and removed until 1553 // this is done with it. 1554 // CLEANUP - with lazy deopt shouldn't need this lock 1555 nmethodLocker nmlock(caller_nm); 1556 1557 if (call_addr != NULL) { 1558 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1559 int ret = iter.next(); // Get item 1560 if (ret) { 1561 assert(iter.addr() == call_addr, "must find call"); 1562 if (iter.type() == relocInfo::static_call_type) { 1563 is_static_call = true; 1564 } else { 1565 assert(iter.type() == relocInfo::virtual_call_type || 1566 iter.type() == relocInfo::opt_virtual_call_type 1567 , "unexpected relocInfo. type"); 1568 } 1569 } else { 1570 assert(!UseInlineCaches, "relocation info. must exist for this address"); 1571 } 1572 1573 // Cleaning the inline cache will force a new resolve. This is more robust 1574 // than directly setting it to the new destination, since resolving of calls 1575 // is always done through the same code path. (experience shows that it 1576 // leads to very hard to track down bugs, if an inline cache gets updated 1577 // to a wrong method). It should not be performance critical, since the 1578 // resolve is only done once. 1579 1580 MutexLocker ml(CompiledIC_lock); 1581 // 1582 // We do not patch the call site if the nmethod has been made non-entrant 1583 // as it is a waste of time 1584 // 1585 if (caller_nm->is_in_use()) { 1586 if (is_static_call) { 1587 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr); 1588 ssc->set_to_clean(); 1589 } else { 1590 // compiled, dispatched call (which used to call an interpreted method) 1591 CompiledIC* inline_cache = CompiledIC_at(call_addr); 1592 inline_cache->set_to_clean(); 1593 } 1594 } 1595 } 1596 1597 } 1598 1599 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle())); 1600 1601 1602 #ifndef PRODUCT 1603 Atomic::inc(&_wrong_method_ctr); 1604 1605 if (TraceCallFixup) { 1606 ResourceMark rm(thread); 1607 tty->print("handle_wrong_method reresolving call to"); 1608 callee_method->print_short_name(tty); 1609 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1610 } 1611 #endif 1612 1613 return callee_method; 1614 } 1615 1616 // --------------------------------------------------------------------------- 1617 // We are calling the interpreter via a c2i. Normally this would mean that 1618 // we were called by a compiled method. However we could have lost a race 1619 // where we went int -> i2c -> c2i and so the caller could in fact be 1620 // interpreted. If the caller is compiled we attempt to patch the caller 1621 // so he no longer calls into the interpreter. 1622 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc)) 1623 methodOop moop(method); 1624 1625 address entry_point = moop->from_compiled_entry(); 1626 1627 // It's possible that deoptimization can occur at a call site which hasn't 1628 // been resolved yet, in which case this function will be called from 1629 // an nmethod that has been patched for deopt and we can ignore the 1630 // request for a fixup. 1631 // Also it is possible that we lost a race in that from_compiled_entry 1632 // is now back to the i2c in that case we don't need to patch and if 1633 // we did we'd leap into space because the callsite needs to use 1634 // "to interpreter" stub in order to load up the methodOop. Don't 1635 // ask me how I know this... 1636 1637 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1638 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) { 1639 return; 1640 } 1641 1642 // The check above makes sure this is a nmethod. 1643 nmethod* nm = cb->as_nmethod_or_null(); 1644 assert(nm, "must be"); 1645 1646 // Don't fixup MethodHandle call sites as c2i/i2c adapters are used 1647 // to implement MethodHandle actions. 1648 if (nm->is_method_handle_return(caller_pc)) { 1649 return; 1650 } 1651 1652 // There is a benign race here. We could be attempting to patch to a compiled 1653 // entry point at the same time the callee is being deoptimized. If that is 1654 // the case then entry_point may in fact point to a c2i and we'd patch the 1655 // call site with the same old data. clear_code will set code() to NULL 1656 // at the end of it. If we happen to see that NULL then we can skip trying 1657 // to patch. If we hit the window where the callee has a c2i in the 1658 // from_compiled_entry and the NULL isn't present yet then we lose the race 1659 // and patch the code with the same old data. Asi es la vida. 1660 1661 if (moop->code() == NULL) return; 1662 1663 if (nm->is_in_use()) { 1664 1665 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1666 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); 1667 if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) { 1668 NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset); 1669 // 1670 // bug 6281185. We might get here after resolving a call site to a vanilla 1671 // virtual call. Because the resolvee uses the verified entry it may then 1672 // see compiled code and attempt to patch the site by calling us. This would 1673 // then incorrectly convert the call site to optimized and its downhill from 1674 // there. If you're lucky you'll get the assert in the bugid, if not you've 1675 // just made a call site that could be megamorphic into a monomorphic site 1676 // for the rest of its life! Just another racing bug in the life of 1677 // fixup_callers_callsite ... 1678 // 1679 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address()); 1680 iter.next(); 1681 assert(iter.has_current(), "must have a reloc at java call site"); 1682 relocInfo::relocType typ = iter.reloc()->type(); 1683 if ( typ != relocInfo::static_call_type && 1684 typ != relocInfo::opt_virtual_call_type && 1685 typ != relocInfo::static_stub_type) { 1686 return; 1687 } 1688 address destination = call->destination(); 1689 if (destination != entry_point) { 1690 CodeBlob* callee = CodeCache::find_blob(destination); 1691 // callee == cb seems weird. It means calling interpreter thru stub. 1692 if (callee == cb || callee->is_adapter_blob()) { 1693 // static call or optimized virtual 1694 if (TraceCallFixup) { 1695 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); 1696 moop->print_short_name(tty); 1697 tty->print_cr(" to " INTPTR_FORMAT, entry_point); 1698 } 1699 call->set_destination_mt_safe(entry_point); 1700 } else { 1701 if (TraceCallFixup) { 1702 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); 1703 moop->print_short_name(tty); 1704 tty->print_cr(" to " INTPTR_FORMAT, entry_point); 1705 } 1706 // assert is too strong could also be resolve destinations. 1707 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be"); 1708 } 1709 } else { 1710 if (TraceCallFixup) { 1711 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); 1712 moop->print_short_name(tty); 1713 tty->print_cr(" to " INTPTR_FORMAT, entry_point); 1714 } 1715 } 1716 } 1717 } 1718 1719 IRT_END 1720 1721 1722 // same as JVM_Arraycopy, but called directly from compiled code 1723 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1724 oopDesc* dest, jint dest_pos, 1725 jint length, 1726 JavaThread* thread)) { 1727 #ifndef PRODUCT 1728 _slow_array_copy_ctr++; 1729 #endif 1730 // Check if we have null pointers 1731 if (src == NULL || dest == NULL) { 1732 THROW(vmSymbols::java_lang_NullPointerException()); 1733 } 1734 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1735 // even though the copy_array API also performs dynamic checks to ensure 1736 // that src and dest are truly arrays (and are conformable). 1737 // The copy_array mechanism is awkward and could be removed, but 1738 // the compilers don't call this function except as a last resort, 1739 // so it probably doesn't matter. 1740 Klass::cast(src->klass())->copy_array((arrayOopDesc*)src, src_pos, 1741 (arrayOopDesc*)dest, dest_pos, 1742 length, thread); 1743 } 1744 JRT_END 1745 1746 char* SharedRuntime::generate_class_cast_message( 1747 JavaThread* thread, const char* objName) { 1748 1749 // Get target class name from the checkcast instruction 1750 vframeStream vfst(thread, true); 1751 assert(!vfst.at_end(), "Java frame must exist"); 1752 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1753 Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at( 1754 cc.index(), thread)); 1755 return generate_class_cast_message(objName, targetKlass->external_name()); 1756 } 1757 1758 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread, 1759 oopDesc* required, 1760 oopDesc* actual) { 1761 if (TraceMethodHandles) { 1762 tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"", 1763 thread, required, actual); 1764 } 1765 assert(EnableInvokeDynamic, ""); 1766 oop singleKlass = wrong_method_type_is_for_single_argument(thread, required); 1767 char* message = NULL; 1768 if (singleKlass != NULL) { 1769 const char* objName = "argument or return value"; 1770 if (actual != NULL) { 1771 // be flexible about the junk passed in: 1772 klassOop ak = (actual->is_klass() 1773 ? (klassOop)actual 1774 : actual->klass()); 1775 objName = Klass::cast(ak)->external_name(); 1776 } 1777 Klass* targetKlass = Klass::cast(required->is_klass() 1778 ? (klassOop)required 1779 : java_lang_Class::as_klassOop(required)); 1780 message = generate_class_cast_message(objName, targetKlass->external_name()); 1781 } else { 1782 // %%% need to get the MethodType string, without messing around too much 1783 const char* desc = NULL; 1784 // Get a signature from the invoke instruction 1785 const char* mhName = "method handle"; 1786 const char* targetType = "the required signature"; 1787 int targetArity = -1, mhArity = -1; 1788 vframeStream vfst(thread, true); 1789 if (!vfst.at_end()) { 1790 Bytecode_invoke call(vfst.method(), vfst.bci()); 1791 methodHandle target; 1792 { 1793 EXCEPTION_MARK; 1794 target = call.static_target(THREAD); 1795 if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; } 1796 } 1797 if (target.not_null() 1798 && target->is_method_handle_invoke() 1799 && required == target->method_handle_type()) { 1800 targetType = target->signature()->as_C_string(); 1801 targetArity = ArgumentCount(target->signature()).size(); 1802 } 1803 } 1804 KlassHandle kignore; int dmf_flags = 0; 1805 methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags); 1806 if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver | 1807 MethodHandles::_dmf_does_dispatch | 1808 MethodHandles::_dmf_from_interface)) != 0) 1809 actual_method = methodHandle(); // MH does extra binds, drops, etc. 1810 bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0); 1811 if (actual_method.not_null()) { 1812 mhName = actual_method->signature()->as_C_string(); 1813 mhArity = ArgumentCount(actual_method->signature()).size(); 1814 if (!actual_method->is_static()) mhArity += 1; 1815 } else if (java_lang_invoke_MethodHandle::is_instance(actual)) { 1816 oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual); 1817 mhArity = java_lang_invoke_MethodType::ptype_count(mhType); 1818 stringStream st; 1819 java_lang_invoke_MethodType::print_signature(mhType, &st); 1820 mhName = st.as_string(); 1821 } 1822 if (targetArity != -1 && targetArity != mhArity) { 1823 if (has_receiver && targetArity == mhArity-1) 1824 desc = " cannot be called without a receiver argument as "; 1825 else 1826 desc = " cannot be called with a different arity as "; 1827 } 1828 message = generate_class_cast_message(mhName, targetType, 1829 desc != NULL ? desc : 1830 " cannot be called as "); 1831 } 1832 if (TraceMethodHandles) { 1833 tty->print_cr("WrongMethodType => message=%s", message); 1834 } 1835 return message; 1836 } 1837 1838 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr, 1839 oopDesc* required) { 1840 if (required == NULL) return NULL; 1841 if (required->klass() == SystemDictionary::Class_klass()) 1842 return required; 1843 if (required->is_klass()) 1844 return Klass::cast(klassOop(required))->java_mirror(); 1845 return NULL; 1846 } 1847 1848 1849 char* SharedRuntime::generate_class_cast_message( 1850 const char* objName, const char* targetKlassName, const char* desc) { 1851 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1; 1852 1853 char* message = NEW_RESOURCE_ARRAY(char, msglen); 1854 if (NULL == message) { 1855 // Shouldn't happen, but don't cause even more problems if it does 1856 message = const_cast<char*>(objName); 1857 } else { 1858 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName); 1859 } 1860 return message; 1861 } 1862 1863 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 1864 (void) JavaThread::current()->reguard_stack(); 1865 JRT_END 1866 1867 1868 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 1869 #ifndef PRODUCT 1870 int SharedRuntime::_monitor_enter_ctr=0; 1871 #endif 1872 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread)) 1873 oop obj(_obj); 1874 #ifndef PRODUCT 1875 _monitor_enter_ctr++; // monitor enter slow 1876 #endif 1877 if (PrintBiasedLockingStatistics) { 1878 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 1879 } 1880 Handle h_obj(THREAD, obj); 1881 if (UseBiasedLocking) { 1882 // Retry fast entry if bias is revoked to avoid unnecessary inflation 1883 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK); 1884 } else { 1885 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK); 1886 } 1887 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 1888 JRT_END 1889 1890 #ifndef PRODUCT 1891 int SharedRuntime::_monitor_exit_ctr=0; 1892 #endif 1893 // Handles the uncommon cases of monitor unlocking in compiled code 1894 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock)) 1895 oop obj(_obj); 1896 #ifndef PRODUCT 1897 _monitor_exit_ctr++; // monitor exit slow 1898 #endif 1899 Thread* THREAD = JavaThread::current(); 1900 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore 1901 // testing was unable to ever fire the assert that guarded it so I have removed it. 1902 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?"); 1903 #undef MIGHT_HAVE_PENDING 1904 #ifdef MIGHT_HAVE_PENDING 1905 // Save and restore any pending_exception around the exception mark. 1906 // While the slow_exit must not throw an exception, we could come into 1907 // this routine with one set. 1908 oop pending_excep = NULL; 1909 const char* pending_file; 1910 int pending_line; 1911 if (HAS_PENDING_EXCEPTION) { 1912 pending_excep = PENDING_EXCEPTION; 1913 pending_file = THREAD->exception_file(); 1914 pending_line = THREAD->exception_line(); 1915 CLEAR_PENDING_EXCEPTION; 1916 } 1917 #endif /* MIGHT_HAVE_PENDING */ 1918 1919 { 1920 // Exit must be non-blocking, and therefore no exceptions can be thrown. 1921 EXCEPTION_MARK; 1922 ObjectSynchronizer::slow_exit(obj, lock, THREAD); 1923 } 1924 1925 #ifdef MIGHT_HAVE_PENDING 1926 if (pending_excep != NULL) { 1927 THREAD->set_pending_exception(pending_excep, pending_file, pending_line); 1928 } 1929 #endif /* MIGHT_HAVE_PENDING */ 1930 JRT_END 1931 1932 #ifndef PRODUCT 1933 1934 void SharedRuntime::print_statistics() { 1935 ttyLocker ttyl; 1936 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'"); 1937 1938 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr); 1939 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr); 1940 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr); 1941 1942 SharedRuntime::print_ic_miss_histogram(); 1943 1944 if (CountRemovableExceptions) { 1945 if (_nof_removable_exceptions > 0) { 1946 Unimplemented(); // this counter is not yet incremented 1947 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions); 1948 } 1949 } 1950 1951 // Dump the JRT_ENTRY counters 1952 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr); 1953 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr); 1954 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr); 1955 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr); 1956 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr); 1957 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr); 1958 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr); 1959 1960 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr ); 1961 tty->print_cr("%5d wrong method", _wrong_method_ctr ); 1962 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr ); 1963 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr ); 1964 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr ); 1965 1966 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr ); 1967 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr ); 1968 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr ); 1969 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr ); 1970 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr ); 1971 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr ); 1972 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr ); 1973 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr ); 1974 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr ); 1975 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr ); 1976 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr ); 1977 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr ); 1978 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr ); 1979 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr ); 1980 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr ); 1981 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr ); 1982 1983 AdapterHandlerLibrary::print_statistics(); 1984 1985 if (xtty != NULL) xtty->tail("statistics"); 1986 } 1987 1988 inline double percent(int x, int y) { 1989 return 100.0 * x / MAX2(y, 1); 1990 } 1991 1992 class MethodArityHistogram { 1993 public: 1994 enum { MAX_ARITY = 256 }; 1995 private: 1996 static int _arity_histogram[MAX_ARITY]; // histogram of #args 1997 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words 1998 static int _max_arity; // max. arity seen 1999 static int _max_size; // max. arg size seen 2000 2001 static void add_method_to_histogram(nmethod* nm) { 2002 methodOop m = nm->method(); 2003 ArgumentCount args(m->signature()); 2004 int arity = args.size() + (m->is_static() ? 0 : 1); 2005 int argsize = m->size_of_parameters(); 2006 arity = MIN2(arity, MAX_ARITY-1); 2007 argsize = MIN2(argsize, MAX_ARITY-1); 2008 int count = nm->method()->compiled_invocation_count(); 2009 _arity_histogram[arity] += count; 2010 _size_histogram[argsize] += count; 2011 _max_arity = MAX2(_max_arity, arity); 2012 _max_size = MAX2(_max_size, argsize); 2013 } 2014 2015 void print_histogram_helper(int n, int* histo, const char* name) { 2016 const int N = MIN2(5, n); 2017 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2018 double sum = 0; 2019 double weighted_sum = 0; 2020 int i; 2021 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; } 2022 double rest = sum; 2023 double percent = sum / 100; 2024 for (i = 0; i <= N; i++) { 2025 rest -= histo[i]; 2026 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent); 2027 } 2028 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent); 2029 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2030 } 2031 2032 void print_histogram() { 2033 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2034 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2035 tty->print_cr("\nSame for parameter size (in words):"); 2036 print_histogram_helper(_max_size, _size_histogram, "size"); 2037 tty->cr(); 2038 } 2039 2040 public: 2041 MethodArityHistogram() { 2042 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2043 _max_arity = _max_size = 0; 2044 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0; 2045 CodeCache::nmethods_do(add_method_to_histogram); 2046 print_histogram(); 2047 } 2048 }; 2049 2050 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2051 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2052 int MethodArityHistogram::_max_arity; 2053 int MethodArityHistogram::_max_size; 2054 2055 void SharedRuntime::print_call_statistics(int comp_total) { 2056 tty->print_cr("Calls from compiled code:"); 2057 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2058 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls; 2059 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls; 2060 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total)); 2061 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2062 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2063 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls)); 2064 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2065 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2066 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2067 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2068 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls)); 2069 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2070 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls)); 2071 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2072 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2073 tty->cr(); 2074 tty->print_cr("Note 1: counter updates are not MT-safe."); 2075 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2076 tty->print_cr(" %% in nested categories are relative to their category"); 2077 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2078 tty->cr(); 2079 2080 MethodArityHistogram h; 2081 } 2082 #endif 2083 2084 2085 // A simple wrapper class around the calling convention information 2086 // that allows sharing of adapters for the same calling convention. 2087 class AdapterFingerPrint : public CHeapObj { 2088 private: 2089 union { 2090 int _compact[3]; 2091 int* _fingerprint; 2092 } _value; 2093 int _length; // A negative length indicates the fingerprint is in the compact form, 2094 // Otherwise _value._fingerprint is the array. 2095 2096 // Remap BasicTypes that are handled equivalently by the adapters. 2097 // These are correct for the current system but someday it might be 2098 // necessary to make this mapping platform dependent. 2099 static BasicType adapter_encoding(BasicType in) { 2100 assert((~0xf & in) == 0, "must fit in 4 bits"); 2101 switch(in) { 2102 case T_BOOLEAN: 2103 case T_BYTE: 2104 case T_SHORT: 2105 case T_CHAR: 2106 // There are all promoted to T_INT in the calling convention 2107 return T_INT; 2108 2109 case T_OBJECT: 2110 case T_ARRAY: 2111 #ifdef _LP64 2112 return T_LONG; 2113 #else 2114 return T_INT; 2115 #endif 2116 2117 case T_INT: 2118 case T_LONG: 2119 case T_FLOAT: 2120 case T_DOUBLE: 2121 case T_VOID: 2122 return in; 2123 2124 default: 2125 ShouldNotReachHere(); 2126 return T_CONFLICT; 2127 } 2128 } 2129 2130 public: 2131 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2132 // The fingerprint is based on the BasicType signature encoded 2133 // into an array of ints with four entries per int. 2134 int* ptr; 2135 int len = (total_args_passed + 3) >> 2; 2136 if (len <= (int)(sizeof(_value._compact) / sizeof(int))) { 2137 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2138 // Storing the signature encoded as signed chars hits about 98% 2139 // of the time. 2140 _length = -len; 2141 ptr = _value._compact; 2142 } else { 2143 _length = len; 2144 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length); 2145 ptr = _value._fingerprint; 2146 } 2147 2148 // Now pack the BasicTypes with 4 per int 2149 int sig_index = 0; 2150 for (int index = 0; index < len; index++) { 2151 int value = 0; 2152 for (int byte = 0; byte < 4; byte++) { 2153 if (sig_index < total_args_passed) { 2154 value = (value << 4) | adapter_encoding(sig_bt[sig_index++]); 2155 } 2156 } 2157 ptr[index] = value; 2158 } 2159 } 2160 2161 ~AdapterFingerPrint() { 2162 if (_length > 0) { 2163 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2164 } 2165 } 2166 2167 int value(int index) { 2168 if (_length < 0) { 2169 return _value._compact[index]; 2170 } 2171 return _value._fingerprint[index]; 2172 } 2173 int length() { 2174 if (_length < 0) return -_length; 2175 return _length; 2176 } 2177 2178 bool is_compact() { 2179 return _length <= 0; 2180 } 2181 2182 unsigned int compute_hash() { 2183 int hash = 0; 2184 for (int i = 0; i < length(); i++) { 2185 int v = value(i); 2186 hash = (hash << 8) ^ v ^ (hash >> 5); 2187 } 2188 return (unsigned int)hash; 2189 } 2190 2191 const char* as_string() { 2192 stringStream st; 2193 for (int i = 0; i < length(); i++) { 2194 st.print(PTR_FORMAT, value(i)); 2195 } 2196 return st.as_string(); 2197 } 2198 2199 bool equals(AdapterFingerPrint* other) { 2200 if (other->_length != _length) { 2201 return false; 2202 } 2203 if (_length < 0) { 2204 return _value._compact[0] == other->_value._compact[0] && 2205 _value._compact[1] == other->_value._compact[1] && 2206 _value._compact[2] == other->_value._compact[2]; 2207 } else { 2208 for (int i = 0; i < _length; i++) { 2209 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2210 return false; 2211 } 2212 } 2213 } 2214 return true; 2215 } 2216 }; 2217 2218 2219 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2220 class AdapterHandlerTable : public BasicHashtable { 2221 friend class AdapterHandlerTableIterator; 2222 2223 private: 2224 2225 #ifndef PRODUCT 2226 static int _lookups; // number of calls to lookup 2227 static int _buckets; // number of buckets checked 2228 static int _equals; // number of buckets checked with matching hash 2229 static int _hits; // number of successful lookups 2230 static int _compact; // number of equals calls with compact signature 2231 #endif 2232 2233 AdapterHandlerEntry* bucket(int i) { 2234 return (AdapterHandlerEntry*)BasicHashtable::bucket(i); 2235 } 2236 2237 public: 2238 AdapterHandlerTable() 2239 : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { } 2240 2241 // Create a new entry suitable for insertion in the table 2242 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) { 2243 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash()); 2244 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 2245 return entry; 2246 } 2247 2248 // Insert an entry into the table 2249 void add(AdapterHandlerEntry* entry) { 2250 int index = hash_to_index(entry->hash()); 2251 add_entry(index, entry); 2252 } 2253 2254 void free_entry(AdapterHandlerEntry* entry) { 2255 entry->deallocate(); 2256 BasicHashtable::free_entry(entry); 2257 } 2258 2259 // Find a entry with the same fingerprint if it exists 2260 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { 2261 NOT_PRODUCT(_lookups++); 2262 AdapterFingerPrint fp(total_args_passed, sig_bt); 2263 unsigned int hash = fp.compute_hash(); 2264 int index = hash_to_index(hash); 2265 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2266 NOT_PRODUCT(_buckets++); 2267 if (e->hash() == hash) { 2268 NOT_PRODUCT(_equals++); 2269 if (fp.equals(e->fingerprint())) { 2270 #ifndef PRODUCT 2271 if (fp.is_compact()) _compact++; 2272 _hits++; 2273 #endif 2274 return e; 2275 } 2276 } 2277 } 2278 return NULL; 2279 } 2280 2281 #ifndef PRODUCT 2282 void print_statistics() { 2283 ResourceMark rm; 2284 int longest = 0; 2285 int empty = 0; 2286 int total = 0; 2287 int nonempty = 0; 2288 for (int index = 0; index < table_size(); index++) { 2289 int count = 0; 2290 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2291 count++; 2292 } 2293 if (count != 0) nonempty++; 2294 if (count == 0) empty++; 2295 if (count > longest) longest = count; 2296 total += count; 2297 } 2298 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f", 2299 empty, longest, total, total / (double)nonempty); 2300 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d", 2301 _lookups, _buckets, _equals, _hits, _compact); 2302 } 2303 #endif 2304 }; 2305 2306 2307 #ifndef PRODUCT 2308 2309 int AdapterHandlerTable::_lookups; 2310 int AdapterHandlerTable::_buckets; 2311 int AdapterHandlerTable::_equals; 2312 int AdapterHandlerTable::_hits; 2313 int AdapterHandlerTable::_compact; 2314 2315 #endif 2316 2317 class AdapterHandlerTableIterator : public StackObj { 2318 private: 2319 AdapterHandlerTable* _table; 2320 int _index; 2321 AdapterHandlerEntry* _current; 2322 2323 void scan() { 2324 while (_index < _table->table_size()) { 2325 AdapterHandlerEntry* a = _table->bucket(_index); 2326 _index++; 2327 if (a != NULL) { 2328 _current = a; 2329 return; 2330 } 2331 } 2332 } 2333 2334 public: 2335 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) { 2336 scan(); 2337 } 2338 bool has_next() { 2339 return _current != NULL; 2340 } 2341 AdapterHandlerEntry* next() { 2342 if (_current != NULL) { 2343 AdapterHandlerEntry* result = _current; 2344 _current = _current->next(); 2345 if (_current == NULL) scan(); 2346 return result; 2347 } else { 2348 return NULL; 2349 } 2350 } 2351 }; 2352 2353 2354 // --------------------------------------------------------------------------- 2355 // Implementation of AdapterHandlerLibrary 2356 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL; 2357 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL; 2358 const int AdapterHandlerLibrary_size = 16*K; 2359 BufferBlob* AdapterHandlerLibrary::_buffer = NULL; 2360 2361 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2362 // Should be called only when AdapterHandlerLibrary_lock is active. 2363 if (_buffer == NULL) // Initialize lazily 2364 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2365 return _buffer; 2366 } 2367 2368 void AdapterHandlerLibrary::initialize() { 2369 if (_adapters != NULL) return; 2370 _adapters = new AdapterHandlerTable(); 2371 2372 // Create a special handler for abstract methods. Abstract methods 2373 // are never compiled so an i2c entry is somewhat meaningless, but 2374 // fill it in with something appropriate just in case. Pass handle 2375 // wrong method for the c2i transitions. 2376 address wrong_method = SharedRuntime::get_handle_wrong_method_stub(); 2377 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL), 2378 StubRoutines::throw_AbstractMethodError_entry(), 2379 wrong_method, wrong_method); 2380 } 2381 2382 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2383 address i2c_entry, 2384 address c2i_entry, 2385 address c2i_unverified_entry) { 2386 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 2387 } 2388 2389 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) { 2390 // Use customized signature handler. Need to lock around updates to 2391 // the AdapterHandlerTable (it is not safe for concurrent readers 2392 // and a single writer: this could be fixed if it becomes a 2393 // problem). 2394 2395 // Get the address of the ic_miss handlers before we grab the 2396 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which 2397 // was caused by the initialization of the stubs happening 2398 // while we held the lock and then notifying jvmti while 2399 // holding it. This just forces the initialization to be a little 2400 // earlier. 2401 address ic_miss = SharedRuntime::get_ic_miss_stub(); 2402 assert(ic_miss != NULL, "must have handler"); 2403 2404 ResourceMark rm; 2405 2406 NOT_PRODUCT(int insts_size); 2407 AdapterBlob* B = NULL; 2408 AdapterHandlerEntry* entry = NULL; 2409 AdapterFingerPrint* fingerprint = NULL; 2410 { 2411 MutexLocker mu(AdapterHandlerLibrary_lock); 2412 // make sure data structure is initialized 2413 initialize(); 2414 2415 if (method->is_abstract()) { 2416 return _abstract_method_handler; 2417 } 2418 2419 // Fill in the signature array, for the calling-convention call. 2420 int total_args_passed = method->size_of_parameters(); // All args on stack 2421 2422 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2423 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2424 int i = 0; 2425 if (!method->is_static()) // Pass in receiver first 2426 sig_bt[i++] = T_OBJECT; 2427 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) { 2428 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 2429 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) 2430 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 2431 } 2432 assert(i == total_args_passed, ""); 2433 2434 // Lookup method signature's fingerprint 2435 entry = _adapters->lookup(total_args_passed, sig_bt); 2436 2437 #ifdef ASSERT 2438 AdapterHandlerEntry* shared_entry = NULL; 2439 if (VerifyAdapterSharing && entry != NULL) { 2440 shared_entry = entry; 2441 entry = NULL; 2442 } 2443 #endif 2444 2445 if (entry != NULL) { 2446 return entry; 2447 } 2448 2449 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2450 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false); 2451 2452 // Make a C heap allocated version of the fingerprint to store in the adapter 2453 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); 2454 2455 // Create I2C & C2I handlers 2456 2457 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2458 if (buf != NULL) { 2459 CodeBuffer buffer(buf); 2460 short buffer_locs[20]; 2461 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2462 sizeof(buffer_locs)/sizeof(relocInfo)); 2463 MacroAssembler _masm(&buffer); 2464 2465 entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2466 total_args_passed, 2467 comp_args_on_stack, 2468 sig_bt, 2469 regs, 2470 fingerprint); 2471 2472 #ifdef ASSERT 2473 if (VerifyAdapterSharing) { 2474 if (shared_entry != NULL) { 2475 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt), 2476 "code must match"); 2477 // Release the one just created and return the original 2478 _adapters->free_entry(entry); 2479 return shared_entry; 2480 } else { 2481 entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt); 2482 } 2483 } 2484 #endif 2485 2486 B = AdapterBlob::create(&buffer); 2487 NOT_PRODUCT(insts_size = buffer.insts_size()); 2488 } 2489 if (B == NULL) { 2490 // CodeCache is full, disable compilation 2491 // Ought to log this but compile log is only per compile thread 2492 // and we're some non descript Java thread. 2493 MutexUnlocker mu(AdapterHandlerLibrary_lock); 2494 CompileBroker::handle_full_code_cache(); 2495 return NULL; // Out of CodeCache space 2496 } 2497 entry->relocate(B->content_begin()); 2498 #ifndef PRODUCT 2499 // debugging suppport 2500 if (PrintAdapterHandlers) { 2501 tty->cr(); 2502 tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)", 2503 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"), 2504 method->signature()->as_C_string(), fingerprint->as_string(), insts_size ); 2505 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry()); 2506 Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size); 2507 } 2508 #endif 2509 2510 _adapters->add(entry); 2511 } 2512 // Outside of the lock 2513 if (B != NULL) { 2514 char blob_id[256]; 2515 jio_snprintf(blob_id, 2516 sizeof(blob_id), 2517 "%s(%s)@" PTR_FORMAT, 2518 B->name(), 2519 fingerprint->as_string(), 2520 B->content_begin()); 2521 Forte::register_stub(blob_id, B->content_begin(), B->content_end()); 2522 2523 if (JvmtiExport::should_post_dynamic_code_generated()) { 2524 JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end()); 2525 } 2526 } 2527 return entry; 2528 } 2529 2530 void AdapterHandlerEntry::relocate(address new_base) { 2531 ptrdiff_t delta = new_base - _i2c_entry; 2532 _i2c_entry += delta; 2533 _c2i_entry += delta; 2534 _c2i_unverified_entry += delta; 2535 } 2536 2537 2538 void AdapterHandlerEntry::deallocate() { 2539 delete _fingerprint; 2540 #ifdef ASSERT 2541 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 2542 if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig); 2543 #endif 2544 } 2545 2546 2547 #ifdef ASSERT 2548 // Capture the code before relocation so that it can be compared 2549 // against other versions. If the code is captured after relocation 2550 // then relative instructions won't be equivalent. 2551 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) { 2552 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length); 2553 _code_length = length; 2554 memcpy(_saved_code, buffer, length); 2555 _total_args_passed = total_args_passed; 2556 _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed); 2557 memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType)); 2558 } 2559 2560 2561 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) { 2562 if (length != _code_length) { 2563 return false; 2564 } 2565 for (int i = 0; i < length; i++) { 2566 if (buffer[i] != _saved_code[i]) { 2567 return false; 2568 } 2569 } 2570 return true; 2571 } 2572 #endif 2573 2574 2575 // Create a native wrapper for this native method. The wrapper converts the 2576 // java compiled calling convention to the native convention, handlizes 2577 // arguments, and transitions to native. On return from the native we transition 2578 // back to java blocking if a safepoint is in progress. 2579 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) { 2580 ResourceMark rm; 2581 nmethod* nm = NULL; 2582 2583 assert(method->has_native_function(), "must have something valid to call!"); 2584 2585 { 2586 // perform the work while holding the lock, but perform any printing outside the lock 2587 MutexLocker mu(AdapterHandlerLibrary_lock); 2588 // See if somebody beat us to it 2589 nm = method->code(); 2590 if (nm) { 2591 return nm; 2592 } 2593 2594 ResourceMark rm; 2595 2596 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2597 if (buf != NULL) { 2598 CodeBuffer buffer(buf); 2599 double locs_buf[20]; 2600 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 2601 MacroAssembler _masm(&buffer); 2602 2603 // Fill in the signature array, for the calling-convention call. 2604 int total_args_passed = method->size_of_parameters(); 2605 2606 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed); 2607 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed); 2608 int i=0; 2609 if( !method->is_static() ) // Pass in receiver first 2610 sig_bt[i++] = T_OBJECT; 2611 SignatureStream ss(method->signature()); 2612 for( ; !ss.at_return_type(); ss.next()) { 2613 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 2614 if( ss.type() == T_LONG || ss.type() == T_DOUBLE ) 2615 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 2616 } 2617 assert( i==total_args_passed, "" ); 2618 BasicType ret_type = ss.type(); 2619 2620 // Now get the compiled-Java layout as input arguments 2621 int comp_args_on_stack; 2622 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false); 2623 2624 // Generate the compiled-to-native wrapper code 2625 nm = SharedRuntime::generate_native_wrapper(&_masm, 2626 method, 2627 compile_id, 2628 total_args_passed, 2629 comp_args_on_stack, 2630 sig_bt,regs, 2631 ret_type); 2632 } 2633 } 2634 2635 // Must unlock before calling set_code 2636 2637 // Install the generated code. 2638 if (nm != NULL) { 2639 if (PrintCompilation) { 2640 ttyLocker ttyl; 2641 CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : ""); 2642 } 2643 method->set_code(method, nm); 2644 nm->post_compiled_method_load_event(); 2645 } else { 2646 // CodeCache is full, disable compilation 2647 CompileBroker::handle_full_code_cache(); 2648 } 2649 return nm; 2650 } 2651 2652 #ifdef HAVE_DTRACE_H 2653 // Create a dtrace nmethod for this method. The wrapper converts the 2654 // java compiled calling convention to the native convention, makes a dummy call 2655 // (actually nops for the size of the call instruction, which become a trap if 2656 // probe is enabled). The returns to the caller. Since this all looks like a 2657 // leaf no thread transition is needed. 2658 2659 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) { 2660 ResourceMark rm; 2661 nmethod* nm = NULL; 2662 2663 if (PrintCompilation) { 2664 ttyLocker ttyl; 2665 tty->print("--- n%s "); 2666 method->print_short_name(tty); 2667 if (method->is_static()) { 2668 tty->print(" (static)"); 2669 } 2670 tty->cr(); 2671 } 2672 2673 { 2674 // perform the work while holding the lock, but perform any printing 2675 // outside the lock 2676 MutexLocker mu(AdapterHandlerLibrary_lock); 2677 // See if somebody beat us to it 2678 nm = method->code(); 2679 if (nm) { 2680 return nm; 2681 } 2682 2683 ResourceMark rm; 2684 2685 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2686 if (buf != NULL) { 2687 CodeBuffer buffer(buf); 2688 // Need a few relocation entries 2689 double locs_buf[20]; 2690 buffer.insts()->initialize_shared_locs( 2691 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 2692 MacroAssembler _masm(&buffer); 2693 2694 // Generate the compiled-to-native wrapper code 2695 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method); 2696 } 2697 } 2698 return nm; 2699 } 2700 2701 // the dtrace method needs to convert java lang string to utf8 string. 2702 void SharedRuntime::get_utf(oopDesc* src, address dst) { 2703 typeArrayOop jlsValue = java_lang_String::value(src); 2704 int jlsOffset = java_lang_String::offset(src); 2705 int jlsLen = java_lang_String::length(src); 2706 jchar* jlsPos = (jlsLen == 0) ? NULL : 2707 jlsValue->char_at_addr(jlsOffset); 2708 assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string"); 2709 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size); 2710 } 2711 #endif // ndef HAVE_DTRACE_H 2712 2713 // ------------------------------------------------------------------------- 2714 // Java-Java calling convention 2715 // (what you use when Java calls Java) 2716 2717 //------------------------------name_for_receiver---------------------------------- 2718 // For a given signature, return the VMReg for parameter 0. 2719 VMReg SharedRuntime::name_for_receiver() { 2720 VMRegPair regs; 2721 BasicType sig_bt = T_OBJECT; 2722 (void) java_calling_convention(&sig_bt, ®s, 1, true); 2723 // Return argument 0 register. In the LP64 build pointers 2724 // take 2 registers, but the VM wants only the 'main' name. 2725 return regs.first(); 2726 } 2727 2728 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) { 2729 // This method is returning a data structure allocating as a 2730 // ResourceObject, so do not put any ResourceMarks in here. 2731 char *s = sig->as_C_string(); 2732 int len = (int)strlen(s); 2733 *s++; len--; // Skip opening paren 2734 char *t = s+len; 2735 while( *(--t) != ')' ) ; // Find close paren 2736 2737 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 ); 2738 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 ); 2739 int cnt = 0; 2740 if (has_receiver) { 2741 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 2742 } 2743 2744 while( s < t ) { 2745 switch( *s++ ) { // Switch on signature character 2746 case 'B': sig_bt[cnt++] = T_BYTE; break; 2747 case 'C': sig_bt[cnt++] = T_CHAR; break; 2748 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break; 2749 case 'F': sig_bt[cnt++] = T_FLOAT; break; 2750 case 'I': sig_bt[cnt++] = T_INT; break; 2751 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break; 2752 case 'S': sig_bt[cnt++] = T_SHORT; break; 2753 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break; 2754 case 'V': sig_bt[cnt++] = T_VOID; break; 2755 case 'L': // Oop 2756 while( *s++ != ';' ) ; // Skip signature 2757 sig_bt[cnt++] = T_OBJECT; 2758 break; 2759 case '[': { // Array 2760 do { // Skip optional size 2761 while( *s >= '0' && *s <= '9' ) s++; 2762 } while( *s++ == '[' ); // Nested arrays? 2763 // Skip element type 2764 if( s[-1] == 'L' ) 2765 while( *s++ != ';' ) ; // Skip signature 2766 sig_bt[cnt++] = T_ARRAY; 2767 break; 2768 } 2769 default : ShouldNotReachHere(); 2770 } 2771 } 2772 assert( cnt < 256, "grow table size" ); 2773 2774 int comp_args_on_stack; 2775 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true); 2776 2777 // the calling convention doesn't count out_preserve_stack_slots so 2778 // we must add that in to get "true" stack offsets. 2779 2780 if (comp_args_on_stack) { 2781 for (int i = 0; i < cnt; i++) { 2782 VMReg reg1 = regs[i].first(); 2783 if( reg1->is_stack()) { 2784 // Yuck 2785 reg1 = reg1->bias(out_preserve_stack_slots()); 2786 } 2787 VMReg reg2 = regs[i].second(); 2788 if( reg2->is_stack()) { 2789 // Yuck 2790 reg2 = reg2->bias(out_preserve_stack_slots()); 2791 } 2792 regs[i].set_pair(reg2, reg1); 2793 } 2794 } 2795 2796 // results 2797 *arg_size = cnt; 2798 return regs; 2799 } 2800 2801 // OSR Migration Code 2802 // 2803 // This code is used convert interpreter frames into compiled frames. It is 2804 // called from very start of a compiled OSR nmethod. A temp array is 2805 // allocated to hold the interesting bits of the interpreter frame. All 2806 // active locks are inflated to allow them to move. The displaced headers and 2807 // active interpeter locals are copied into the temp buffer. Then we return 2808 // back to the compiled code. The compiled code then pops the current 2809 // interpreter frame off the stack and pushes a new compiled frame. Then it 2810 // copies the interpreter locals and displaced headers where it wants. 2811 // Finally it calls back to free the temp buffer. 2812 // 2813 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 2814 2815 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) ) 2816 2817 #ifdef IA64 2818 ShouldNotReachHere(); // NYI 2819 #endif /* IA64 */ 2820 2821 // 2822 // This code is dependent on the memory layout of the interpreter local 2823 // array and the monitors. On all of our platforms the layout is identical 2824 // so this code is shared. If some platform lays the their arrays out 2825 // differently then this code could move to platform specific code or 2826 // the code here could be modified to copy items one at a time using 2827 // frame accessor methods and be platform independent. 2828 2829 frame fr = thread->last_frame(); 2830 assert( fr.is_interpreted_frame(), "" ); 2831 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" ); 2832 2833 // Figure out how many monitors are active. 2834 int active_monitor_count = 0; 2835 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 2836 kptr < fr.interpreter_frame_monitor_begin(); 2837 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 2838 if( kptr->obj() != NULL ) active_monitor_count++; 2839 } 2840 2841 // QQQ we could place number of active monitors in the array so that compiled code 2842 // could double check it. 2843 2844 methodOop moop = fr.interpreter_frame_method(); 2845 int max_locals = moop->max_locals(); 2846 // Allocate temp buffer, 1 word per local & 2 per active monitor 2847 int buf_size_words = max_locals + active_monitor_count*2; 2848 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words); 2849 2850 // Copy the locals. Order is preserved so that loading of longs works. 2851 // Since there's no GC I can copy the oops blindly. 2852 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 2853 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 2854 (HeapWord*)&buf[0], 2855 max_locals); 2856 2857 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 2858 int i = max_locals; 2859 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 2860 kptr2 < fr.interpreter_frame_monitor_begin(); 2861 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 2862 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array 2863 BasicLock *lock = kptr2->lock(); 2864 // Inflate so the displaced header becomes position-independent 2865 if (lock->displaced_header()->is_unlocked()) 2866 ObjectSynchronizer::inflate_helper(kptr2->obj()); 2867 // Now the displaced header is free to move 2868 buf[i++] = (intptr_t)lock->displaced_header(); 2869 buf[i++] = (intptr_t)kptr2->obj(); 2870 } 2871 } 2872 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" ); 2873 2874 return buf; 2875 JRT_END 2876 2877 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 2878 FREE_C_HEAP_ARRAY(intptr_t,buf); 2879 JRT_END 2880 2881 bool AdapterHandlerLibrary::contains(CodeBlob* b) { 2882 AdapterHandlerTableIterator iter(_adapters); 2883 while (iter.has_next()) { 2884 AdapterHandlerEntry* a = iter.next(); 2885 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true; 2886 } 2887 return false; 2888 } 2889 2890 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) { 2891 AdapterHandlerTableIterator iter(_adapters); 2892 while (iter.has_next()) { 2893 AdapterHandlerEntry* a = iter.next(); 2894 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) { 2895 st->print("Adapter for signature: "); 2896 st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT, 2897 a->fingerprint()->as_string(), 2898 a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry()); 2899 2900 return; 2901 } 2902 } 2903 assert(false, "Should have found handler"); 2904 } 2905 2906 #ifndef PRODUCT 2907 2908 void AdapterHandlerLibrary::print_statistics() { 2909 _adapters->print_statistics(); 2910 } 2911 2912 #endif /* PRODUCT */