1 /* 2 * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/icBuffer.hpp" 30 #include "code/nmethod.hpp" 31 #include "code/pcDesc.hpp" 32 #include "code/scopeDesc.hpp" 33 #include "code/vtableStubs.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/compilerOracle.hpp" 36 #include "compiler/oopMap.hpp" 37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" 38 #include "gc_implementation/g1/heapRegion.hpp" 39 #include "gc_interface/collectedHeap.hpp" 40 #include "interpreter/bytecode.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/linkResolver.hpp" 43 #include "memory/barrierSet.hpp" 44 #include "memory/gcLocker.inline.hpp" 45 #include "memory/oopFactory.hpp" 46 #include "oops/objArrayKlass.hpp" 47 #include "oops/oop.inline.hpp" 48 #include "opto/addnode.hpp" 49 #include "opto/callnode.hpp" 50 #include "opto/cfgnode.hpp" 51 #include "opto/connode.hpp" 52 #include "opto/graphKit.hpp" 53 #include "opto/machnode.hpp" 54 #include "opto/matcher.hpp" 55 #include "opto/memnode.hpp" 56 #include "opto/mulnode.hpp" 57 #include "opto/runtime.hpp" 58 #include "opto/subnode.hpp" 59 #include "runtime/fprofiler.hpp" 60 #include "runtime/handles.inline.hpp" 61 #include "runtime/interfaceSupport.hpp" 62 #include "runtime/javaCalls.hpp" 63 #include "runtime/sharedRuntime.hpp" 64 #include "runtime/signature.hpp" 65 #include "runtime/threadCritical.hpp" 66 #include "runtime/vframe.hpp" 67 #include "runtime/vframeArray.hpp" 68 #include "runtime/vframe_hp.hpp" 69 #include "utilities/copy.hpp" 70 #include "utilities/preserveException.hpp" 71 #ifdef TARGET_ARCH_MODEL_x86_32 72 # include "adfiles/ad_x86_32.hpp" 73 #endif 74 #ifdef TARGET_ARCH_MODEL_x86_64 75 # include "adfiles/ad_x86_64.hpp" 76 #endif 77 #ifdef TARGET_ARCH_MODEL_sparc 78 # include "adfiles/ad_sparc.hpp" 79 #endif 80 #ifdef TARGET_ARCH_MODEL_zero 81 # include "adfiles/ad_zero.hpp" 82 #endif 83 #ifdef TARGET_ARCH_MODEL_arm 84 # include "adfiles/ad_arm.hpp" 85 #endif 86 #ifdef TARGET_ARCH_MODEL_ppc 87 # include "adfiles/ad_ppc.hpp" 88 #endif 89 90 91 // For debugging purposes: 92 // To force FullGCALot inside a runtime function, add the following two lines 93 // 94 // Universe::release_fullgc_alot_dummy(); 95 // MarkSweep::invoke(0, "Debugging"); 96 // 97 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 98 99 100 101 102 // Compiled code entry points 103 address OptoRuntime::_new_instance_Java = NULL; 104 address OptoRuntime::_new_array_Java = NULL; 105 address OptoRuntime::_multianewarray2_Java = NULL; 106 address OptoRuntime::_multianewarray3_Java = NULL; 107 address OptoRuntime::_multianewarray4_Java = NULL; 108 address OptoRuntime::_multianewarray5_Java = NULL; 109 address OptoRuntime::_g1_wb_pre_Java = NULL; 110 address OptoRuntime::_g1_wb_post_Java = NULL; 111 address OptoRuntime::_vtable_must_compile_Java = NULL; 112 address OptoRuntime::_complete_monitor_locking_Java = NULL; 113 address OptoRuntime::_rethrow_Java = NULL; 114 115 address OptoRuntime::_slow_arraycopy_Java = NULL; 116 address OptoRuntime::_register_finalizer_Java = NULL; 117 118 # ifdef ENABLE_ZAP_DEAD_LOCALS 119 address OptoRuntime::_zap_dead_Java_locals_Java = NULL; 120 address OptoRuntime::_zap_dead_native_locals_Java = NULL; 121 # endif 122 123 ExceptionBlob* OptoRuntime::_exception_blob; 124 125 // This should be called in an assertion at the start of OptoRuntime routines 126 // which are entered from compiled code (all of them) 127 #ifndef PRODUCT 128 static bool check_compiled_frame(JavaThread* thread) { 129 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 130 #ifdef ASSERT 131 RegisterMap map(thread, false); 132 frame caller = thread->last_frame().sender(&map); 133 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 134 #endif /* ASSERT */ 135 return true; 136 } 137 #endif 138 139 140 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \ 141 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc) 142 143 void OptoRuntime::generate(ciEnv* env) { 144 145 generate_exception_blob(); 146 147 // Note: tls: Means fetching the return oop out of the thread-local storage 148 // 149 // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc 150 // ------------------------------------------------------------------------------------------------------------------------------- 151 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false); 152 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false); 153 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false); 154 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false); 155 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false); 156 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false); 157 gen(env, _g1_wb_pre_Java , g1_wb_pre_Type , SharedRuntime::g1_wb_pre , 0 , false, false, false); 158 gen(env, _g1_wb_post_Java , g1_wb_post_Type , SharedRuntime::g1_wb_post , 0 , false, false, false); 159 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C , 0 , false, false, false); 160 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true ); 161 162 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false); 163 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false); 164 165 # ifdef ENABLE_ZAP_DEAD_LOCALS 166 gen(env, _zap_dead_Java_locals_Java , zap_dead_locals_Type , zap_dead_Java_locals_C , 0 , false, true , false ); 167 gen(env, _zap_dead_native_locals_Java , zap_dead_locals_Type , zap_dead_native_locals_C , 0 , false, true , false ); 168 # endif 169 170 } 171 172 #undef gen 173 174 175 // Helper method to do generation of RunTimeStub's 176 address OptoRuntime::generate_stub( ciEnv* env, 177 TypeFunc_generator gen, address C_function, 178 const char *name, int is_fancy_jump, 179 bool pass_tls, 180 bool save_argument_registers, 181 bool return_pc ) { 182 ResourceMark rm; 183 Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc ); 184 return C.stub_entry_point(); 185 } 186 187 const char* OptoRuntime::stub_name(address entry) { 188 #ifndef PRODUCT 189 CodeBlob* cb = CodeCache::find_blob(entry); 190 RuntimeStub* rs =(RuntimeStub *)cb; 191 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub"); 192 return rs->name(); 193 #else 194 // Fast implementation for product mode (maybe it should be inlined too) 195 return "runtime stub"; 196 #endif 197 } 198 199 200 //============================================================================= 201 // Opto compiler runtime routines 202 //============================================================================= 203 204 205 //=============================allocation====================================== 206 // We failed the fast-path allocation. Now we need to do a scavenge or GC 207 // and try allocation again. 208 209 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) { 210 // After any safepoint, just before going back to compiled code, 211 // we inform the GC that we will be doing initializing writes to 212 // this object in the future without emitting card-marks, so 213 // GC may take any compensating steps. 214 // NOTE: Keep this code consistent with GraphKit::store_barrier. 215 216 oop new_obj = thread->vm_result(); 217 if (new_obj == NULL) return; 218 219 assert(Universe::heap()->can_elide_tlab_store_barriers(), 220 "compiler must check this first"); 221 // GC may decide to give back a safer copy of new_obj. 222 new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj); 223 thread->set_vm_result(new_obj); 224 } 225 226 // object allocation 227 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread)) 228 JRT_BLOCK; 229 #ifndef PRODUCT 230 SharedRuntime::_new_instance_ctr++; // new instance requires GC 231 #endif 232 assert(check_compiled_frame(thread), "incorrect caller"); 233 234 // These checks are cheap to make and support reflective allocation. 235 int lh = Klass::cast(klass)->layout_helper(); 236 if (Klass::layout_helper_needs_slow_path(lh) 237 || !instanceKlass::cast(klass)->is_initialized()) { 238 KlassHandle kh(THREAD, klass); 239 kh->check_valid_for_instantiation(false, THREAD); 240 if (!HAS_PENDING_EXCEPTION) { 241 instanceKlass::cast(kh())->initialize(THREAD); 242 } 243 if (!HAS_PENDING_EXCEPTION) { 244 klass = kh(); 245 } else { 246 klass = NULL; 247 } 248 } 249 250 if (klass != NULL) { 251 // Scavenge and allocate an instance. 252 oop result = instanceKlass::cast(klass)->allocate_instance(THREAD); 253 thread->set_vm_result(result); 254 255 // Pass oops back through thread local storage. Our apparent type to Java 256 // is that we return an oop, but we can block on exit from this routine and 257 // a GC can trash the oop in C's return register. The generated stub will 258 // fetch the oop from TLS after any possible GC. 259 } 260 261 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 262 JRT_BLOCK_END; 263 264 if (GraphKit::use_ReduceInitialCardMarks()) { 265 // inform GC that we won't do card marks for initializing writes. 266 new_store_pre_barrier(thread); 267 } 268 JRT_END 269 270 271 // array allocation 272 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread)) 273 JRT_BLOCK; 274 #ifndef PRODUCT 275 SharedRuntime::_new_array_ctr++; // new array requires GC 276 #endif 277 assert(check_compiled_frame(thread), "incorrect caller"); 278 279 // Scavenge and allocate an instance. 280 oop result; 281 282 if (Klass::cast(array_type)->oop_is_typeArray()) { 283 // The oopFactory likes to work with the element type. 284 // (We could bypass the oopFactory, since it doesn't add much value.) 285 BasicType elem_type = typeArrayKlass::cast(array_type)->element_type(); 286 result = oopFactory::new_typeArray(elem_type, len, THREAD); 287 } else { 288 // Although the oopFactory likes to work with the elem_type, 289 // the compiler prefers the array_type, since it must already have 290 // that latter value in hand for the fast path. 291 klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass(); 292 result = oopFactory::new_objArray(elem_type, len, THREAD); 293 } 294 295 // Pass oops back through thread local storage. Our apparent type to Java 296 // is that we return an oop, but we can block on exit from this routine and 297 // a GC can trash the oop in C's return register. The generated stub will 298 // fetch the oop from TLS after any possible GC. 299 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 300 thread->set_vm_result(result); 301 JRT_BLOCK_END; 302 303 if (GraphKit::use_ReduceInitialCardMarks()) { 304 // inform GC that we won't do card marks for initializing writes. 305 new_store_pre_barrier(thread); 306 } 307 JRT_END 308 309 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 310 311 // multianewarray for 2 dimensions 312 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread)) 313 #ifndef PRODUCT 314 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 315 #endif 316 assert(check_compiled_frame(thread), "incorrect caller"); 317 assert(oop(elem_type)->is_klass(), "not a class"); 318 jint dims[2]; 319 dims[0] = len1; 320 dims[1] = len2; 321 oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 322 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 323 thread->set_vm_result(obj); 324 JRT_END 325 326 // multianewarray for 3 dimensions 327 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread)) 328 #ifndef PRODUCT 329 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 330 #endif 331 assert(check_compiled_frame(thread), "incorrect caller"); 332 assert(oop(elem_type)->is_klass(), "not a class"); 333 jint dims[3]; 334 dims[0] = len1; 335 dims[1] = len2; 336 dims[2] = len3; 337 oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 338 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 339 thread->set_vm_result(obj); 340 JRT_END 341 342 // multianewarray for 4 dimensions 343 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread)) 344 #ifndef PRODUCT 345 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 346 #endif 347 assert(check_compiled_frame(thread), "incorrect caller"); 348 assert(oop(elem_type)->is_klass(), "not a class"); 349 jint dims[4]; 350 dims[0] = len1; 351 dims[1] = len2; 352 dims[2] = len3; 353 dims[3] = len4; 354 oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 355 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 356 thread->set_vm_result(obj); 357 JRT_END 358 359 // multianewarray for 5 dimensions 360 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread)) 361 #ifndef PRODUCT 362 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 363 #endif 364 assert(check_compiled_frame(thread), "incorrect caller"); 365 assert(oop(elem_type)->is_klass(), "not a class"); 366 jint dims[5]; 367 dims[0] = len1; 368 dims[1] = len2; 369 dims[2] = len3; 370 dims[3] = len4; 371 dims[4] = len5; 372 oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 373 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 374 thread->set_vm_result(obj); 375 JRT_END 376 377 const TypeFunc *OptoRuntime::new_instance_Type() { 378 // create input type (domain) 379 const Type **fields = TypeTuple::fields(1); 380 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 381 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 382 383 // create result type (range) 384 fields = TypeTuple::fields(1); 385 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 386 387 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 388 389 return TypeFunc::make(domain, range); 390 } 391 392 393 const TypeFunc *OptoRuntime::athrow_Type() { 394 // create input type (domain) 395 const Type **fields = TypeTuple::fields(1); 396 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 397 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 398 399 // create result type (range) 400 fields = TypeTuple::fields(0); 401 402 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 403 404 return TypeFunc::make(domain, range); 405 } 406 407 408 const TypeFunc *OptoRuntime::new_array_Type() { 409 // create input type (domain) 410 const Type **fields = TypeTuple::fields(2); 411 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 412 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 413 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 414 415 // create result type (range) 416 fields = TypeTuple::fields(1); 417 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 418 419 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 420 421 return TypeFunc::make(domain, range); 422 } 423 424 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) { 425 // create input type (domain) 426 const int nargs = ndim + 1; 427 const Type **fields = TypeTuple::fields(nargs); 428 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 429 for( int i = 1; i < nargs; i++ ) 430 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 431 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 432 433 // create result type (range) 434 fields = TypeTuple::fields(1); 435 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 436 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 437 438 return TypeFunc::make(domain, range); 439 } 440 441 const TypeFunc *OptoRuntime::multianewarray2_Type() { 442 return multianewarray_Type(2); 443 } 444 445 const TypeFunc *OptoRuntime::multianewarray3_Type() { 446 return multianewarray_Type(3); 447 } 448 449 const TypeFunc *OptoRuntime::multianewarray4_Type() { 450 return multianewarray_Type(4); 451 } 452 453 const TypeFunc *OptoRuntime::multianewarray5_Type() { 454 return multianewarray_Type(5); 455 } 456 457 const TypeFunc *OptoRuntime::g1_wb_pre_Type() { 458 const Type **fields = TypeTuple::fields(2); 459 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value 460 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread 461 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 462 463 // create result type (range) 464 fields = TypeTuple::fields(0); 465 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 466 467 return TypeFunc::make(domain, range); 468 } 469 470 const TypeFunc *OptoRuntime::g1_wb_post_Type() { 471 472 const Type **fields = TypeTuple::fields(2); 473 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Card addr 474 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread 475 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 476 477 // create result type (range) 478 fields = TypeTuple::fields(0); 479 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 480 481 return TypeFunc::make(domain, range); 482 } 483 484 const TypeFunc *OptoRuntime::uncommon_trap_Type() { 485 // create input type (domain) 486 const Type **fields = TypeTuple::fields(1); 487 // Symbol* name of class to be loaded 488 fields[TypeFunc::Parms+0] = TypeInt::INT; 489 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 490 491 // create result type (range) 492 fields = TypeTuple::fields(0); 493 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 494 495 return TypeFunc::make(domain, range); 496 } 497 498 # ifdef ENABLE_ZAP_DEAD_LOCALS 499 // Type used for stub generation for zap_dead_locals. 500 // No inputs or outputs 501 const TypeFunc *OptoRuntime::zap_dead_locals_Type() { 502 // create input type (domain) 503 const Type **fields = TypeTuple::fields(0); 504 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields); 505 506 // create result type (range) 507 fields = TypeTuple::fields(0); 508 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields); 509 510 return TypeFunc::make(domain,range); 511 } 512 # endif 513 514 515 //----------------------------------------------------------------------------- 516 // Monitor Handling 517 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() { 518 // create input type (domain) 519 const Type **fields = TypeTuple::fields(2); 520 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 521 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 522 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 523 524 // create result type (range) 525 fields = TypeTuple::fields(0); 526 527 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 528 529 return TypeFunc::make(domain,range); 530 } 531 532 533 //----------------------------------------------------------------------------- 534 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() { 535 // create input type (domain) 536 const Type **fields = TypeTuple::fields(2); 537 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 538 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 539 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 540 541 // create result type (range) 542 fields = TypeTuple::fields(0); 543 544 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 545 546 return TypeFunc::make(domain,range); 547 } 548 549 const TypeFunc* OptoRuntime::flush_windows_Type() { 550 // create input type (domain) 551 const Type** fields = TypeTuple::fields(1); 552 fields[TypeFunc::Parms+0] = NULL; // void 553 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 554 555 // create result type 556 fields = TypeTuple::fields(1); 557 fields[TypeFunc::Parms+0] = NULL; // void 558 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 559 560 return TypeFunc::make(domain, range); 561 } 562 563 const TypeFunc* OptoRuntime::l2f_Type() { 564 // create input type (domain) 565 const Type **fields = TypeTuple::fields(2); 566 fields[TypeFunc::Parms+0] = TypeLong::LONG; 567 fields[TypeFunc::Parms+1] = Type::HALF; 568 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 569 570 // create result type (range) 571 fields = TypeTuple::fields(1); 572 fields[TypeFunc::Parms+0] = Type::FLOAT; 573 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 574 575 return TypeFunc::make(domain, range); 576 } 577 578 const TypeFunc* OptoRuntime::modf_Type() { 579 const Type **fields = TypeTuple::fields(2); 580 fields[TypeFunc::Parms+0] = Type::FLOAT; 581 fields[TypeFunc::Parms+1] = Type::FLOAT; 582 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 583 584 // create result type (range) 585 fields = TypeTuple::fields(1); 586 fields[TypeFunc::Parms+0] = Type::FLOAT; 587 588 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 589 590 return TypeFunc::make(domain, range); 591 } 592 593 const TypeFunc *OptoRuntime::Math_D_D_Type() { 594 // create input type (domain) 595 const Type **fields = TypeTuple::fields(2); 596 // Symbol* name of class to be loaded 597 fields[TypeFunc::Parms+0] = Type::DOUBLE; 598 fields[TypeFunc::Parms+1] = Type::HALF; 599 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 600 601 // create result type (range) 602 fields = TypeTuple::fields(2); 603 fields[TypeFunc::Parms+0] = Type::DOUBLE; 604 fields[TypeFunc::Parms+1] = Type::HALF; 605 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 606 607 return TypeFunc::make(domain, range); 608 } 609 610 const TypeFunc* OptoRuntime::Math_DD_D_Type() { 611 const Type **fields = TypeTuple::fields(4); 612 fields[TypeFunc::Parms+0] = Type::DOUBLE; 613 fields[TypeFunc::Parms+1] = Type::HALF; 614 fields[TypeFunc::Parms+2] = Type::DOUBLE; 615 fields[TypeFunc::Parms+3] = Type::HALF; 616 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 617 618 // create result type (range) 619 fields = TypeTuple::fields(2); 620 fields[TypeFunc::Parms+0] = Type::DOUBLE; 621 fields[TypeFunc::Parms+1] = Type::HALF; 622 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 623 624 return TypeFunc::make(domain, range); 625 } 626 627 //-------------- currentTimeMillis 628 629 const TypeFunc* OptoRuntime::current_time_millis_Type() { 630 // create input type (domain) 631 const Type **fields = TypeTuple::fields(0); 632 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 633 634 // create result type (range) 635 fields = TypeTuple::fields(2); 636 fields[TypeFunc::Parms+0] = TypeLong::LONG; 637 fields[TypeFunc::Parms+1] = Type::HALF; 638 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 639 640 return TypeFunc::make(domain, range); 641 } 642 643 // arraycopy stub variations: 644 enum ArrayCopyType { 645 ac_fast, // void(ptr, ptr, size_t) 646 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 647 ac_slow, // void(ptr, int, ptr, int, int) 648 ac_generic // int(ptr, int, ptr, int, int) 649 }; 650 651 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 652 // create input type (domain) 653 int num_args = (act == ac_fast ? 3 : 5); 654 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 655 int argcnt = num_args; 656 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 657 const Type** fields = TypeTuple::fields(argcnt); 658 int argp = TypeFunc::Parms; 659 fields[argp++] = TypePtr::NOTNULL; // src 660 if (num_size_args == 0) { 661 fields[argp++] = TypeInt::INT; // src_pos 662 } 663 fields[argp++] = TypePtr::NOTNULL; // dest 664 if (num_size_args == 0) { 665 fields[argp++] = TypeInt::INT; // dest_pos 666 fields[argp++] = TypeInt::INT; // length 667 } 668 while (num_size_args-- > 0) { 669 fields[argp++] = TypeX_X; // size in whatevers (size_t) 670 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 671 } 672 if (act == ac_checkcast) { 673 fields[argp++] = TypePtr::NOTNULL; // super_klass 674 } 675 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 676 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 677 678 // create result type if needed 679 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 680 fields = TypeTuple::fields(1); 681 if (retcnt == 0) 682 fields[TypeFunc::Parms+0] = NULL; // void 683 else 684 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 685 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 686 return TypeFunc::make(domain, range); 687 } 688 689 const TypeFunc* OptoRuntime::fast_arraycopy_Type() { 690 // This signature is simple: Two base pointers and a size_t. 691 return make_arraycopy_Type(ac_fast); 692 } 693 694 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() { 695 // An extension of fast_arraycopy_Type which adds type checking. 696 return make_arraycopy_Type(ac_checkcast); 697 } 698 699 const TypeFunc* OptoRuntime::slow_arraycopy_Type() { 700 // This signature is exactly the same as System.arraycopy. 701 // There are no intptr_t (int/long) arguments. 702 return make_arraycopy_Type(ac_slow); 703 } 704 705 const TypeFunc* OptoRuntime::generic_arraycopy_Type() { 706 // This signature is like System.arraycopy, except that it returns status. 707 return make_arraycopy_Type(ac_generic); 708 } 709 710 711 const TypeFunc* OptoRuntime::array_fill_Type() { 712 // create input type (domain): pointer, int, size_t 713 const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 714 int argp = TypeFunc::Parms; 715 fields[argp++] = TypePtr::NOTNULL; 716 fields[argp++] = TypeInt::INT; 717 fields[argp++] = TypeX_X; // size in whatevers (size_t) 718 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 719 const TypeTuple *domain = TypeTuple::make(argp, fields); 720 721 // create result type 722 fields = TypeTuple::fields(1); 723 fields[TypeFunc::Parms+0] = NULL; // void 724 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 725 726 return TypeFunc::make(domain, range); 727 } 728 729 //------------- Interpreter state access for on stack replacement 730 const TypeFunc* OptoRuntime::osr_end_Type() { 731 // create input type (domain) 732 const Type **fields = TypeTuple::fields(1); 733 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 734 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 735 736 // create result type 737 fields = TypeTuple::fields(1); 738 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 739 fields[TypeFunc::Parms+0] = NULL; // void 740 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 741 return TypeFunc::make(domain, range); 742 } 743 744 //-------------- methodData update helpers 745 746 const TypeFunc* OptoRuntime::profile_receiver_type_Type() { 747 // create input type (domain) 748 const Type **fields = TypeTuple::fields(2); 749 fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer 750 fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop 751 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 752 753 // create result type 754 fields = TypeTuple::fields(1); 755 fields[TypeFunc::Parms+0] = NULL; // void 756 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 757 return TypeFunc::make(domain,range); 758 } 759 760 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver)) 761 if (receiver == NULL) return; 762 klassOop receiver_klass = receiver->klass(); 763 764 intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells(); 765 int empty_row = -1; // free row, if any is encountered 766 767 // ReceiverTypeData* vc = new ReceiverTypeData(mdp); 768 for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) { 769 // if (vc->receiver(row) == receiver_klass) 770 int receiver_off = ReceiverTypeData::receiver_cell_index(row); 771 intptr_t row_recv = *(mdp + receiver_off); 772 if (row_recv == (intptr_t) receiver_klass) { 773 // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment); 774 int count_off = ReceiverTypeData::receiver_count_cell_index(row); 775 *(mdp + count_off) += DataLayout::counter_increment; 776 return; 777 } else if (row_recv == 0) { 778 // else if (vc->receiver(row) == NULL) 779 empty_row = (int) row; 780 } 781 } 782 783 if (empty_row != -1) { 784 int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row); 785 // vc->set_receiver(empty_row, receiver_klass); 786 *(mdp + receiver_off) = (intptr_t) receiver_klass; 787 // vc->set_receiver_count(empty_row, DataLayout::counter_increment); 788 int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row); 789 *(mdp + count_off) = DataLayout::counter_increment; 790 } else { 791 // Receiver did not match any saved receiver and there is no empty row for it. 792 // Increment total counter to indicate polymorphic case. 793 intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset())); 794 *count_p += DataLayout::counter_increment; 795 } 796 JRT_END 797 798 //----------------------------------------------------------------------------- 799 // implicit exception support. 800 801 static void report_null_exception_in_code_cache(address exception_pc) { 802 ResourceMark rm; 803 CodeBlob* n = CodeCache::find_blob(exception_pc); 804 if (n != NULL) { 805 tty->print_cr("#"); 806 tty->print_cr("# HotSpot Runtime Error, null exception in generated code"); 807 tty->print_cr("#"); 808 tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc); 809 810 if (n->is_nmethod()) { 811 methodOop method = ((nmethod*)n)->method(); 812 tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string()); 813 tty->print_cr("#"); 814 if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) { 815 const char* title = "HotSpot Runtime Error"; 816 const char* question = "Do you want to exclude compilation of this method in future runs?"; 817 if (os::message_box(title, question)) { 818 CompilerOracle::append_comment_to_file(""); 819 CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude"); 820 CompilerOracle::append_comment_to_file(""); 821 CompilerOracle::append_exclude_to_file(method); 822 tty->print_cr("#"); 823 tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile); 824 tty->print_cr("#"); 825 } 826 } 827 fatal("Implicit null exception happened in compiled method"); 828 } else { 829 n->print(); 830 fatal("Implicit null exception happened in generated stub"); 831 } 832 } 833 fatal("Implicit null exception at wrong place"); 834 } 835 836 837 //------------------------------------------------------------------------------------- 838 // register policy 839 840 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 841 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 842 switch (register_save_policy[reg]) { 843 case 'C': return false; //SOC 844 case 'E': return true ; //SOE 845 case 'N': return false; //NS 846 case 'A': return false; //AS 847 } 848 ShouldNotReachHere(); 849 return false; 850 } 851 852 //----------------------------------------------------------------------- 853 // Exceptions 854 // 855 856 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN; 857 858 // The method is an entry that is always called by a C++ method not 859 // directly from compiled code. Compiled code will call the C++ method following. 860 // We can't allow async exception to be installed during exception processing. 861 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm)) 862 863 // Do not confuse exception_oop with pending_exception. The exception_oop 864 // is only used to pass arguments into the method. Not for general 865 // exception handling. DO NOT CHANGE IT to use pending_exception, since 866 // the runtime stubs checks this on exit. 867 assert(thread->exception_oop() != NULL, "exception oop is found"); 868 address handler_address = NULL; 869 870 Handle exception(thread, thread->exception_oop()); 871 872 if (TraceExceptions) { 873 trace_exception(exception(), thread->exception_pc(), ""); 874 } 875 // for AbortVMOnException flag 876 NOT_PRODUCT(Exceptions::debug_check_abort(exception)); 877 878 #ifdef ASSERT 879 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { 880 // should throw an exception here 881 ShouldNotReachHere(); 882 } 883 #endif 884 885 886 // new exception handling: this method is entered only from adapters 887 // exceptions from compiled java methods are handled in compiled code 888 // using rethrow node 889 890 address pc = thread->exception_pc(); 891 nm = CodeCache::find_nmethod(pc); 892 assert(nm != NULL, "No NMethod found"); 893 if (nm->is_native_method()) { 894 fatal("Native mathod should not have path to exception handling"); 895 } else { 896 // we are switching to old paradigm: search for exception handler in caller_frame 897 // instead in exception handler of caller_frame.sender() 898 899 if (JvmtiExport::can_post_on_exceptions()) { 900 // "Full-speed catching" is not necessary here, 901 // since we're notifying the VM on every catch. 902 // Force deoptimization and the rest of the lookup 903 // will be fine. 904 deoptimize_caller_frame(thread, true); 905 } 906 907 // Check the stack guard pages. If enabled, look for handler in this frame; 908 // otherwise, forcibly unwind the frame. 909 // 910 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 911 bool force_unwind = !thread->reguard_stack(); 912 bool deopting = false; 913 if (nm->is_deopt_pc(pc)) { 914 deopting = true; 915 RegisterMap map(thread, false); 916 frame deoptee = thread->last_frame().sender(&map); 917 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 918 // Adjust the pc back to the original throwing pc 919 pc = deoptee.pc(); 920 } 921 922 // If we are forcing an unwind because of stack overflow then deopt is 923 // irrelevant sice we are throwing the frame away anyway. 924 925 if (deopting && !force_unwind) { 926 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 927 } else { 928 929 handler_address = 930 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc); 931 932 if (handler_address == NULL) { 933 oop original_exception = exception(); 934 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true); 935 assert (handler_address != NULL, "must have compiled handler"); 936 // Update the exception cache only when the unwind was not forced 937 // and there didn't happen another exception during the computation of the 938 // compiled exception handler. (Notice that the comparison below may wrongly fail 939 // because a GC can happen while the compiled exception handler is computed. 940 // But that should be a very rare case and updating the exception cache only 941 // during the next exception occurence should have no measurable performance impact. 942 if (!force_unwind && original_exception == exception()) { 943 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 944 } 945 } else { 946 assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same"); 947 } 948 } 949 950 thread->set_exception_pc(pc); 951 thread->set_exception_handler_pc(handler_address); 952 thread->set_exception_stack_size(0); 953 954 // Check if the exception PC is a MethodHandle call site. 955 thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); 956 } 957 958 // Restore correct return pc. Was saved above. 959 thread->set_exception_oop(exception()); 960 return handler_address; 961 962 JRT_END 963 964 // We are entering here from exception_blob 965 // If there is a compiled exception handler in this method, we will continue there; 966 // otherwise we will unwind the stack and continue at the caller of top frame method 967 // Note we enter without the usual JRT wrapper. We will call a helper routine that 968 // will do the normal VM entry. We do it this way so that we can see if the nmethod 969 // we looked up the handler for has been deoptimized in the meantime. If it has been 970 // we must not use the handler and instread return the deopt blob. 971 address OptoRuntime::handle_exception_C(JavaThread* thread) { 972 // 973 // We are in Java not VM and in debug mode we have a NoHandleMark 974 // 975 #ifndef PRODUCT 976 SharedRuntime::_find_handler_ctr++; // find exception handler 977 #endif 978 debug_only(NoHandleMark __hm;) 979 nmethod* nm = NULL; 980 address handler_address = NULL; 981 { 982 // Enter the VM 983 984 ResetNoHandleMark rnhm; 985 handler_address = handle_exception_C_helper(thread, nm); 986 } 987 988 // Back in java: Use no oops, DON'T safepoint 989 990 // Now check to see if the handler we are returning is in a now 991 // deoptimized frame 992 993 if (nm != NULL) { 994 RegisterMap map(thread, false); 995 frame caller = thread->last_frame().sender(&map); 996 #ifdef ASSERT 997 assert(caller.is_compiled_frame(), "must be"); 998 #endif // ASSERT 999 if (caller.is_deoptimized_frame()) { 1000 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1001 } 1002 } 1003 return handler_address; 1004 } 1005 1006 //------------------------------rethrow---------------------------------------- 1007 // We get here after compiled code has executed a 'RethrowNode'. The callee 1008 // is either throwing or rethrowing an exception. The callee-save registers 1009 // have been restored, synchronized objects have been unlocked and the callee 1010 // stack frame has been removed. The return address was passed in. 1011 // Exception oop is passed as the 1st argument. This routine is then called 1012 // from the stub. On exit, we know where to jump in the caller's code. 1013 // After this C code exits, the stub will pop his frame and end in a jump 1014 // (instead of a return). We enter the caller's default handler. 1015 // 1016 // This must be JRT_LEAF: 1017 // - caller will not change its state as we cannot block on exit, 1018 // therefore raw_exception_handler_for_return_address is all it takes 1019 // to handle deoptimized blobs 1020 // 1021 // However, there needs to be a safepoint check in the middle! So compiled 1022 // safepoints are completely watertight. 1023 // 1024 // Thus, it cannot be a leaf since it contains the No_GC_Verifier. 1025 // 1026 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 1027 // 1028 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 1029 #ifndef PRODUCT 1030 SharedRuntime::_rethrow_ctr++; // count rethrows 1031 #endif 1032 assert (exception != NULL, "should have thrown a NULLPointerException"); 1033 #ifdef ASSERT 1034 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { 1035 // should throw an exception here 1036 ShouldNotReachHere(); 1037 } 1038 #endif 1039 1040 thread->set_vm_result(exception); 1041 // Frame not compiled (handles deoptimization blob) 1042 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 1043 } 1044 1045 1046 const TypeFunc *OptoRuntime::rethrow_Type() { 1047 // create input type (domain) 1048 const Type **fields = TypeTuple::fields(1); 1049 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1050 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1051 1052 // create result type (range) 1053 fields = TypeTuple::fields(1); 1054 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1055 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1056 1057 return TypeFunc::make(domain, range); 1058 } 1059 1060 1061 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 1062 // Deoptimize frame 1063 if (doit) { 1064 // Called from within the owner thread, so no need for safepoint 1065 RegisterMap reg_map(thread); 1066 frame stub_frame = thread->last_frame(); 1067 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1068 frame caller_frame = stub_frame.sender(®_map); 1069 1070 // bypass VM_DeoptimizeFrame and deoptimize the frame directly 1071 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 1072 } 1073 } 1074 1075 1076 const TypeFunc *OptoRuntime::register_finalizer_Type() { 1077 // create input type (domain) 1078 const Type **fields = TypeTuple::fields(1); 1079 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 1080 // // The JavaThread* is passed to each routine as the last argument 1081 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 1082 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1083 1084 // create result type (range) 1085 fields = TypeTuple::fields(0); 1086 1087 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1088 1089 return TypeFunc::make(domain,range); 1090 } 1091 1092 1093 //----------------------------------------------------------------------------- 1094 // Dtrace support. entry and exit probes have the same signature 1095 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() { 1096 // create input type (domain) 1097 const Type **fields = TypeTuple::fields(2); 1098 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1099 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // methodOop; Method we are entering 1100 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1101 1102 // create result type (range) 1103 fields = TypeTuple::fields(0); 1104 1105 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1106 1107 return TypeFunc::make(domain,range); 1108 } 1109 1110 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() { 1111 // create input type (domain) 1112 const Type **fields = TypeTuple::fields(2); 1113 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1114 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 1115 1116 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1117 1118 // create result type (range) 1119 fields = TypeTuple::fields(0); 1120 1121 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1122 1123 return TypeFunc::make(domain,range); 1124 } 1125 1126 1127 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread)) 1128 assert(obj->is_oop(), "must be a valid oop"); 1129 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise"); 1130 instanceKlass::register_finalizer(instanceOop(obj), CHECK); 1131 JRT_END 1132 1133 //----------------------------------------------------------------------------- 1134 1135 NamedCounter * volatile OptoRuntime::_named_counters = NULL; 1136 1137 // 1138 // dump the collected NamedCounters. 1139 // 1140 void OptoRuntime::print_named_counters() { 1141 int total_lock_count = 0; 1142 int eliminated_lock_count = 0; 1143 1144 NamedCounter* c = _named_counters; 1145 while (c) { 1146 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 1147 int count = c->count(); 1148 if (count > 0) { 1149 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 1150 if (Verbose) { 1151 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 1152 } 1153 total_lock_count += count; 1154 if (eliminated) { 1155 eliminated_lock_count += count; 1156 } 1157 } 1158 } else if (c->tag() == NamedCounter::BiasedLockingCounter) { 1159 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters(); 1160 if (blc->nonzero()) { 1161 tty->print_cr("%s", c->name()); 1162 blc->print_on(tty); 1163 } 1164 } 1165 c = c->next(); 1166 } 1167 if (total_lock_count > 0) { 1168 tty->print_cr("dynamic locks: %d", total_lock_count); 1169 if (eliminated_lock_count) { 1170 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 1171 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 1172 } 1173 } 1174 } 1175 1176 // 1177 // Allocate a new NamedCounter. The JVMState is used to generate the 1178 // name which consists of method@line for the inlining tree. 1179 // 1180 1181 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 1182 int max_depth = youngest_jvms->depth(); 1183 1184 // Visit scopes from youngest to oldest. 1185 bool first = true; 1186 stringStream st; 1187 for (int depth = max_depth; depth >= 1; depth--) { 1188 JVMState* jvms = youngest_jvms->of_depth(depth); 1189 ciMethod* m = jvms->has_method() ? jvms->method() : NULL; 1190 if (!first) { 1191 st.print(" "); 1192 } else { 1193 first = false; 1194 } 1195 int bci = jvms->bci(); 1196 if (bci < 0) bci = 0; 1197 st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci); 1198 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 1199 } 1200 NamedCounter* c; 1201 if (tag == NamedCounter::BiasedLockingCounter) { 1202 c = new BiasedLockingNamedCounter(strdup(st.as_string())); 1203 } else { 1204 c = new NamedCounter(strdup(st.as_string()), tag); 1205 } 1206 1207 // atomically add the new counter to the head of the list. We only 1208 // add counters so this is safe. 1209 NamedCounter* head; 1210 do { 1211 head = _named_counters; 1212 c->set_next(head); 1213 } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head); 1214 return c; 1215 } 1216 1217 //----------------------------------------------------------------------------- 1218 // Non-product code 1219 #ifndef PRODUCT 1220 1221 int trace_exception_counter = 0; 1222 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) { 1223 ttyLocker ttyl; 1224 trace_exception_counter++; 1225 tty->print("%d [Exception (%s): ", trace_exception_counter, msg); 1226 exception_oop->print_value(); 1227 tty->print(" in "); 1228 CodeBlob* blob = CodeCache::find_blob(exception_pc); 1229 if (blob->is_nmethod()) { 1230 ((nmethod*)blob)->method()->print_value(); 1231 } else if (blob->is_runtime_stub()) { 1232 tty->print("<runtime-stub>"); 1233 } else { 1234 tty->print("<unknown>"); 1235 } 1236 tty->print(" at " INTPTR_FORMAT, exception_pc); 1237 tty->print_cr("]"); 1238 } 1239 1240 #endif // PRODUCT 1241 1242 1243 # ifdef ENABLE_ZAP_DEAD_LOCALS 1244 // Called from call sites in compiled code with oop maps (actually safepoints) 1245 // Zaps dead locals in first java frame. 1246 // Is entry because may need to lock to generate oop maps 1247 // Currently, only used for compiler frames, but someday may be used 1248 // for interpreter frames, too. 1249 1250 int OptoRuntime::ZapDeadCompiledLocals_count = 0; 1251 1252 // avoid pointers to member funcs with these helpers 1253 static bool is_java_frame( frame* f) { return f->is_java_frame(); } 1254 static bool is_native_frame(frame* f) { return f->is_native_frame(); } 1255 1256 1257 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread, 1258 bool (*is_this_the_right_frame_to_zap)(frame*)) { 1259 assert(JavaThread::current() == thread, "is this needed?"); 1260 1261 if ( !ZapDeadCompiledLocals ) return; 1262 1263 bool skip = false; 1264 1265 if ( ZapDeadCompiledLocalsFirst == 0 ) ; // nothing special 1266 else if ( ZapDeadCompiledLocalsFirst > ZapDeadCompiledLocals_count ) skip = true; 1267 else if ( ZapDeadCompiledLocalsFirst == ZapDeadCompiledLocals_count ) 1268 warning("starting zapping after skipping"); 1269 1270 if ( ZapDeadCompiledLocalsLast == -1 ) ; // nothing special 1271 else if ( ZapDeadCompiledLocalsLast < ZapDeadCompiledLocals_count ) skip = true; 1272 else if ( ZapDeadCompiledLocalsLast == ZapDeadCompiledLocals_count ) 1273 warning("about to zap last zap"); 1274 1275 ++ZapDeadCompiledLocals_count; // counts skipped zaps, too 1276 1277 if ( skip ) return; 1278 1279 // find java frame and zap it 1280 1281 for (StackFrameStream sfs(thread); !sfs.is_done(); sfs.next()) { 1282 if (is_this_the_right_frame_to_zap(sfs.current()) ) { 1283 sfs.current()->zap_dead_locals(thread, sfs.register_map()); 1284 return; 1285 } 1286 } 1287 warning("no frame found to zap in zap_dead_Java_locals_C"); 1288 } 1289 1290 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread)) 1291 zap_dead_java_or_native_locals(thread, is_java_frame); 1292 JRT_END 1293 1294 // The following does not work because for one thing, the 1295 // thread state is wrong; it expects java, but it is native. 1296 // Also, the invariants in a native stub are different and 1297 // I'm not sure it is safe to have a MachCalRuntimeDirectNode 1298 // in there. 1299 // So for now, we do not zap in native stubs. 1300 1301 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread)) 1302 zap_dead_java_or_native_locals(thread, is_native_frame); 1303 JRT_END 1304 1305 # endif