1 /* 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "compiler/compileBroker.hpp" 29 #include "gc_interface/collectedHeap.hpp" 30 #include "interpreter/interpreter.hpp" 31 #include "interpreter/interpreterRuntime.hpp" 32 #include "interpreter/linkResolver.hpp" 33 #include "interpreter/templateTable.hpp" 34 #include "memory/oopFactory.hpp" 35 #include "memory/universe.inline.hpp" 36 #include "oops/constantPoolOop.hpp" 37 #include "oops/cpCacheOop.hpp" 38 #include "oops/instanceKlass.hpp" 39 #include "oops/methodDataOop.hpp" 40 #include "oops/objArrayKlass.hpp" 41 #include "oops/oop.inline.hpp" 42 #include "oops/symbolOop.hpp" 43 #include "prims/jvmtiExport.hpp" 44 #include "prims/nativeLookup.hpp" 45 #include "runtime/biasedLocking.hpp" 46 #include "runtime/compilationPolicy.hpp" 47 #include "runtime/deoptimization.hpp" 48 #include "runtime/fieldDescriptor.hpp" 49 #include "runtime/handles.inline.hpp" 50 #include "runtime/interfaceSupport.hpp" 51 #include "runtime/java.hpp" 52 #include "runtime/jfieldIDWorkaround.hpp" 53 #include "runtime/osThread.hpp" 54 #include "runtime/sharedRuntime.hpp" 55 #include "runtime/stubRoutines.hpp" 56 #include "runtime/synchronizer.hpp" 57 #include "runtime/threadCritical.hpp" 58 #include "utilities/events.hpp" 59 #ifdef TARGET_ARCH_x86 60 # include "vm_version_x86.hpp" 61 #endif 62 #ifdef TARGET_ARCH_sparc 63 # include "vm_version_sparc.hpp" 64 #endif 65 #ifdef TARGET_ARCH_zero 66 # include "vm_version_zero.hpp" 67 #endif 68 #ifdef COMPILER2 69 #include "opto/runtime.hpp" 70 #endif 71 72 class UnlockFlagSaver { 73 private: 74 JavaThread* _thread; 75 bool _do_not_unlock; 76 public: 77 UnlockFlagSaver(JavaThread* t) { 78 _thread = t; 79 _do_not_unlock = t->do_not_unlock_if_synchronized(); 80 t->set_do_not_unlock_if_synchronized(false); 81 } 82 ~UnlockFlagSaver() { 83 _thread->set_do_not_unlock_if_synchronized(_do_not_unlock); 84 } 85 }; 86 87 //------------------------------------------------------------------------------------------------------------------------ 88 // State accessors 89 90 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) { 91 last_frame(thread).interpreter_frame_set_bcp(bcp); 92 if (ProfileInterpreter) { 93 // ProfileTraps uses MDOs independently of ProfileInterpreter. 94 // That is why we must check both ProfileInterpreter and mdo != NULL. 95 methodDataOop mdo = last_frame(thread).interpreter_frame_method()->method_data(); 96 if (mdo != NULL) { 97 NEEDS_CLEANUP; 98 last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci())); 99 } 100 } 101 } 102 103 //------------------------------------------------------------------------------------------------------------------------ 104 // Constants 105 106 107 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide)) 108 // access constant pool 109 constantPoolOop pool = method(thread)->constants(); 110 int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc); 111 constantTag tag = pool->tag_at(index); 112 113 if (tag.is_unresolved_klass() || tag.is_klass()) { 114 klassOop klass = pool->klass_at(index, CHECK); 115 oop java_class = klass->klass_part()->java_mirror(); 116 thread->set_vm_result(java_class); 117 } else { 118 #ifdef ASSERT 119 // If we entered this runtime routine, we believed the tag contained 120 // an unresolved string, an unresolved class or a resolved class. 121 // However, another thread could have resolved the unresolved string 122 // or class by the time we go there. 123 assert(tag.is_unresolved_string()|| tag.is_string(), "expected string"); 124 #endif 125 oop s_oop = pool->string_at(index, CHECK); 126 thread->set_vm_result(s_oop); 127 } 128 IRT_END 129 130 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) { 131 assert(bytecode == Bytecodes::_fast_aldc || 132 bytecode == Bytecodes::_fast_aldc_w, "wrong bc"); 133 ResourceMark rm(thread); 134 methodHandle m (thread, method(thread)); 135 Bytecode_loadconstant* ldc = Bytecode_loadconstant_at(m, bci(thread)); 136 oop result = ldc->resolve_constant(THREAD); 137 DEBUG_ONLY(ConstantPoolCacheEntry* cpce = m->constants()->cache()->entry_at(ldc->cache_index())); 138 assert(result == cpce->f1(), "expected result for assembly code"); 139 } 140 IRT_END 141 142 143 //------------------------------------------------------------------------------------------------------------------------ 144 // Allocation 145 146 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, constantPoolOopDesc* pool, int index)) 147 klassOop k_oop = pool->klass_at(index, CHECK); 148 instanceKlassHandle klass (THREAD, k_oop); 149 150 // Make sure we are not instantiating an abstract klass 151 klass->check_valid_for_instantiation(true, CHECK); 152 153 // Make sure klass is initialized 154 klass->initialize(CHECK); 155 156 // At this point the class may not be fully initialized 157 // because of recursive initialization. If it is fully 158 // initialized & has_finalized is not set, we rewrite 159 // it into its fast version (Note: no locking is needed 160 // here since this is an atomic byte write and can be 161 // done more than once). 162 // 163 // Note: In case of classes with has_finalized we don't 164 // rewrite since that saves us an extra check in 165 // the fast version which then would call the 166 // slow version anyway (and do a call back into 167 // Java). 168 // If we have a breakpoint, then we don't rewrite 169 // because the _breakpoint bytecode would be lost. 170 oop obj = klass->allocate_instance(CHECK); 171 thread->set_vm_result(obj); 172 IRT_END 173 174 175 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size)) 176 oop obj = oopFactory::new_typeArray(type, size, CHECK); 177 thread->set_vm_result(obj); 178 IRT_END 179 180 181 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, constantPoolOopDesc* pool, int index, jint size)) 182 // Note: no oopHandle for pool & klass needed since they are not used 183 // anymore after new_objArray() and no GC can happen before. 184 // (This may have to change if this code changes!) 185 klassOop klass = pool->klass_at(index, CHECK); 186 objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK); 187 thread->set_vm_result(obj); 188 IRT_END 189 190 191 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address)) 192 // We may want to pass in more arguments - could make this slightly faster 193 constantPoolOop constants = method(thread)->constants(); 194 int i = get_index_u2(thread, Bytecodes::_multianewarray); 195 klassOop klass = constants->klass_at(i, CHECK); 196 int nof_dims = number_of_dimensions(thread); 197 assert(oop(klass)->is_klass(), "not a class"); 198 assert(nof_dims >= 1, "multianewarray rank must be nonzero"); 199 200 // We must create an array of jints to pass to multi_allocate. 201 ResourceMark rm(thread); 202 const int small_dims = 10; 203 jint dim_array[small_dims]; 204 jint *dims = &dim_array[0]; 205 if (nof_dims > small_dims) { 206 dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims); 207 } 208 for (int index = 0; index < nof_dims; index++) { 209 // offset from first_size_address is addressed as local[index] 210 int n = Interpreter::local_offset_in_bytes(index)/jintSize; 211 dims[index] = first_size_address[n]; 212 } 213 oop obj = arrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK); 214 thread->set_vm_result(obj); 215 IRT_END 216 217 218 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) 219 assert(obj->is_oop(), "must be a valid oop"); 220 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise"); 221 instanceKlass::register_finalizer(instanceOop(obj), CHECK); 222 IRT_END 223 224 225 // Quicken instance-of and check-cast bytecodes 226 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread)) 227 // Force resolving; quicken the bytecode 228 int which = get_index_u2(thread, Bytecodes::_checkcast); 229 constantPoolOop cpool = method(thread)->constants(); 230 // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded 231 // program we might have seen an unquick'd bytecode in the interpreter but have another 232 // thread quicken the bytecode before we get here. 233 // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" ); 234 klassOop klass = cpool->klass_at(which, CHECK); 235 thread->set_vm_result(klass); 236 IRT_END 237 238 239 //------------------------------------------------------------------------------------------------------------------------ 240 // Exceptions 241 242 // Assume the compiler is (or will be) interested in this event. 243 // If necessary, create an MDO to hold the information, and record it. 244 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) { 245 assert(ProfileTraps, "call me only if profiling"); 246 methodHandle trap_method(thread, method(thread)); 247 248 if (trap_method.not_null()) { 249 methodDataHandle trap_mdo(thread, trap_method->method_data()); 250 if (trap_mdo.is_null()) { 251 methodOopDesc::build_interpreter_method_data(trap_method, THREAD); 252 if (HAS_PENDING_EXCEPTION) { 253 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); 254 CLEAR_PENDING_EXCEPTION; 255 } 256 trap_mdo = methodDataHandle(thread, trap_method->method_data()); 257 // and fall through... 258 } 259 if (trap_mdo.not_null()) { 260 // Update per-method count of trap events. The interpreter 261 // is updating the MDO to simulate the effect of compiler traps. 262 int trap_bci = trap_method->bci_from(bcp(thread)); 263 Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason); 264 } 265 } 266 } 267 268 static Handle get_preinitialized_exception(klassOop k, TRAPS) { 269 // get klass 270 instanceKlass* klass = instanceKlass::cast(k); 271 assert(klass->is_initialized(), 272 "this klass should have been initialized during VM initialization"); 273 // create instance - do not call constructor since we may have no 274 // (java) stack space left (should assert constructor is empty) 275 Handle exception; 276 oop exception_oop = klass->allocate_instance(CHECK_(exception)); 277 exception = Handle(THREAD, exception_oop); 278 if (StackTraceInThrowable) { 279 java_lang_Throwable::fill_in_stack_trace(exception); 280 } 281 return exception; 282 } 283 284 // Special handling for stack overflow: since we don't have any (java) stack 285 // space left we use the pre-allocated & pre-initialized StackOverflowError 286 // klass to create an stack overflow error instance. We do not call its 287 // constructor for the same reason (it is empty, anyway). 288 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread)) 289 Handle exception = get_preinitialized_exception( 290 SystemDictionary::StackOverflowError_klass(), 291 CHECK); 292 THROW_HANDLE(exception); 293 IRT_END 294 295 296 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message)) 297 // lookup exception klass 298 symbolHandle s = oopFactory::new_symbol_handle(name, CHECK); 299 if (ProfileTraps) { 300 if (s == vmSymbols::java_lang_ArithmeticException()) { 301 note_trap(thread, Deoptimization::Reason_div0_check, CHECK); 302 } else if (s == vmSymbols::java_lang_NullPointerException()) { 303 note_trap(thread, Deoptimization::Reason_null_check, CHECK); 304 } 305 } 306 // create exception 307 Handle exception = Exceptions::new_exception(thread, s(), message); 308 thread->set_vm_result(exception()); 309 IRT_END 310 311 312 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj)) 313 ResourceMark rm(thread); 314 const char* klass_name = Klass::cast(obj->klass())->external_name(); 315 // lookup exception klass 316 symbolHandle s = oopFactory::new_symbol_handle(name, CHECK); 317 if (ProfileTraps) { 318 note_trap(thread, Deoptimization::Reason_class_check, CHECK); 319 } 320 // create exception, with klass name as detail message 321 Handle exception = Exceptions::new_exception(thread, s(), klass_name); 322 thread->set_vm_result(exception()); 323 IRT_END 324 325 326 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index)) 327 char message[jintAsStringSize]; 328 // lookup exception klass 329 symbolHandle s = oopFactory::new_symbol_handle(name, CHECK); 330 if (ProfileTraps) { 331 note_trap(thread, Deoptimization::Reason_range_check, CHECK); 332 } 333 // create exception 334 sprintf(message, "%d", index); 335 THROW_MSG(s(), message); 336 IRT_END 337 338 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException( 339 JavaThread* thread, oopDesc* obj)) 340 341 ResourceMark rm(thread); 342 char* message = SharedRuntime::generate_class_cast_message( 343 thread, Klass::cast(obj->klass())->external_name()); 344 345 if (ProfileTraps) { 346 note_trap(thread, Deoptimization::Reason_class_check, CHECK); 347 } 348 349 // create exception 350 THROW_MSG(vmSymbols::java_lang_ClassCastException(), message); 351 IRT_END 352 353 // required can be either a MethodType, or a Class (for a single argument) 354 // actual (if not null) can be either a MethodHandle, or an arbitrary value (for a single argument) 355 IRT_ENTRY(void, InterpreterRuntime::throw_WrongMethodTypeException(JavaThread* thread, 356 oopDesc* required, 357 oopDesc* actual)) { 358 ResourceMark rm(thread); 359 char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual); 360 361 if (ProfileTraps) { 362 note_trap(thread, Deoptimization::Reason_constraint, CHECK); 363 } 364 365 // create exception 366 THROW_MSG(vmSymbols::java_dyn_WrongMethodTypeException(), message); 367 } 368 IRT_END 369 370 371 372 // exception_handler_for_exception(...) returns the continuation address, 373 // the exception oop (via TLS) and sets the bci/bcp for the continuation. 374 // The exception oop is returned to make sure it is preserved over GC (it 375 // is only on the stack if the exception was thrown explicitly via athrow). 376 // During this operation, the expression stack contains the values for the 377 // bci where the exception happened. If the exception was propagated back 378 // from a call, the expression stack contains the values for the bci at the 379 // invoke w/o arguments (i.e., as if one were inside the call). 380 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception)) 381 382 Handle h_exception(thread, exception); 383 methodHandle h_method (thread, method(thread)); 384 constantPoolHandle h_constants(thread, h_method->constants()); 385 typeArrayHandle h_extable (thread, h_method->exception_table()); 386 bool should_repeat; 387 int handler_bci; 388 int current_bci = bci(thread); 389 390 // Need to do this check first since when _do_not_unlock_if_synchronized 391 // is set, we don't want to trigger any classloading which may make calls 392 // into java, or surprisingly find a matching exception handler for bci 0 393 // since at this moment the method hasn't been "officially" entered yet. 394 if (thread->do_not_unlock_if_synchronized()) { 395 ResourceMark rm; 396 assert(current_bci == 0, "bci isn't zero for do_not_unlock_if_synchronized"); 397 thread->set_vm_result(exception); 398 #ifdef CC_INTERP 399 return (address) -1; 400 #else 401 return Interpreter::remove_activation_entry(); 402 #endif 403 } 404 405 do { 406 should_repeat = false; 407 408 // assertions 409 #ifdef ASSERT 410 assert(h_exception.not_null(), "NULL exceptions should be handled by athrow"); 411 assert(h_exception->is_oop(), "just checking"); 412 // Check that exception is a subclass of Throwable, otherwise we have a VerifyError 413 if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) { 414 if (ExitVMOnVerifyError) vm_exit(-1); 415 ShouldNotReachHere(); 416 } 417 #endif 418 419 // tracing 420 if (TraceExceptions) { 421 ttyLocker ttyl; 422 ResourceMark rm(thread); 423 tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", h_exception->print_value_string(), (address)h_exception()); 424 tty->print_cr(" thrown in interpreter method <%s>", h_method->print_value_string()); 425 tty->print_cr(" at bci %d for thread " INTPTR_FORMAT, current_bci, thread); 426 } 427 // Don't go paging in something which won't be used. 428 // else if (h_extable->length() == 0) { 429 // // disabled for now - interpreter is not using shortcut yet 430 // // (shortcut is not to call runtime if we have no exception handlers) 431 // // warning("performance bug: should not call runtime if method has no exception handlers"); 432 // } 433 // for AbortVMOnException flag 434 NOT_PRODUCT(Exceptions::debug_check_abort(h_exception)); 435 436 // exception handler lookup 437 KlassHandle h_klass(THREAD, h_exception->klass()); 438 handler_bci = h_method->fast_exception_handler_bci_for(h_klass, current_bci, THREAD); 439 if (HAS_PENDING_EXCEPTION) { 440 // We threw an exception while trying to find the exception handler. 441 // Transfer the new exception to the exception handle which will 442 // be set into thread local storage, and do another lookup for an 443 // exception handler for this exception, this time starting at the 444 // BCI of the exception handler which caused the exception to be 445 // thrown (bug 4307310). 446 h_exception = Handle(THREAD, PENDING_EXCEPTION); 447 CLEAR_PENDING_EXCEPTION; 448 if (handler_bci >= 0) { 449 current_bci = handler_bci; 450 should_repeat = true; 451 } 452 } 453 } while (should_repeat == true); 454 455 // notify JVMTI of an exception throw; JVMTI will detect if this is a first 456 // time throw or a stack unwinding throw and accordingly notify the debugger 457 if (JvmtiExport::can_post_on_exceptions()) { 458 JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception()); 459 } 460 461 #ifdef CC_INTERP 462 address continuation = (address)(intptr_t) handler_bci; 463 #else 464 address continuation = NULL; 465 #endif 466 address handler_pc = NULL; 467 if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) { 468 // Forward exception to callee (leaving bci/bcp untouched) because (a) no 469 // handler in this method, or (b) after a stack overflow there is not yet 470 // enough stack space available to reprotect the stack. 471 #ifndef CC_INTERP 472 continuation = Interpreter::remove_activation_entry(); 473 #endif 474 // Count this for compilation purposes 475 h_method->interpreter_throwout_increment(); 476 } else { 477 // handler in this method => change bci/bcp to handler bci/bcp and continue there 478 handler_pc = h_method->code_base() + handler_bci; 479 #ifndef CC_INTERP 480 set_bcp_and_mdp(handler_pc, thread); 481 continuation = Interpreter::dispatch_table(vtos)[*handler_pc]; 482 #endif 483 } 484 // notify debugger of an exception catch 485 // (this is good for exceptions caught in native methods as well) 486 if (JvmtiExport::can_post_on_exceptions()) { 487 JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL)); 488 } 489 490 thread->set_vm_result(h_exception()); 491 return continuation; 492 IRT_END 493 494 495 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread)) 496 assert(thread->has_pending_exception(), "must only ne called if there's an exception pending"); 497 // nothing to do - eventually we should remove this code entirely (see comments @ call sites) 498 IRT_END 499 500 501 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread)) 502 THROW(vmSymbols::java_lang_AbstractMethodError()); 503 IRT_END 504 505 506 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) 507 THROW(vmSymbols::java_lang_IncompatibleClassChangeError()); 508 IRT_END 509 510 511 //------------------------------------------------------------------------------------------------------------------------ 512 // Fields 513 // 514 515 IRT_ENTRY(void, InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode)) 516 // resolve field 517 FieldAccessInfo info; 518 constantPoolHandle pool(thread, method(thread)->constants()); 519 bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic); 520 521 { 522 JvmtiHideSingleStepping jhss(thread); 523 LinkResolver::resolve_field(info, pool, get_index_u2_cpcache(thread, bytecode), 524 bytecode, false, CHECK); 525 } // end JvmtiHideSingleStepping 526 527 // check if link resolution caused cpCache to be updated 528 if (already_resolved(thread)) return; 529 530 // compute auxiliary field attributes 531 TosState state = as_TosState(info.field_type()); 532 533 // We need to delay resolving put instructions on final fields 534 // until we actually invoke one. This is required so we throw 535 // exceptions at the correct place. If we do not resolve completely 536 // in the current pass, leaving the put_code set to zero will 537 // cause the next put instruction to reresolve. 538 bool is_put = (bytecode == Bytecodes::_putfield || 539 bytecode == Bytecodes::_putstatic); 540 Bytecodes::Code put_code = (Bytecodes::Code)0; 541 542 // We also need to delay resolving getstatic instructions until the 543 // class is intitialized. This is required so that access to the static 544 // field will call the initialization function every time until the class 545 // is completely initialized ala. in 2.17.5 in JVM Specification. 546 instanceKlass *klass = instanceKlass::cast(info.klass()->as_klassOop()); 547 bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) && 548 !klass->is_initialized()); 549 Bytecodes::Code get_code = (Bytecodes::Code)0; 550 551 552 if (!uninitialized_static) { 553 get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield); 554 if (is_put || !info.access_flags().is_final()) { 555 put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield); 556 } 557 } 558 559 cache_entry(thread)->set_field( 560 get_code, 561 put_code, 562 info.klass(), 563 info.field_index(), 564 info.field_offset(), 565 state, 566 info.access_flags().is_final(), 567 info.access_flags().is_volatile() 568 ); 569 IRT_END 570 571 572 //------------------------------------------------------------------------------------------------------------------------ 573 // Synchronization 574 // 575 // The interpreter's synchronization code is factored out so that it can 576 // be shared by method invocation and synchronized blocks. 577 //%note synchronization_3 578 579 static void trace_locking(Handle& h_locking_obj, bool is_locking) { 580 ObjectSynchronizer::trace_locking(h_locking_obj, false, true, is_locking); 581 } 582 583 584 //%note monitor_1 585 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem)) 586 #ifdef ASSERT 587 thread->last_frame().interpreter_frame_verify_monitor(elem); 588 #endif 589 if (PrintBiasedLockingStatistics) { 590 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 591 } 592 Handle h_obj(thread, elem->obj()); 593 assert(Universe::heap()->is_in_reserved_or_null(h_obj()), 594 "must be NULL or an object"); 595 if (UseBiasedLocking) { 596 // Retry fast entry if bias is revoked to avoid unnecessary inflation 597 ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK); 598 } else { 599 ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK); 600 } 601 assert(Universe::heap()->is_in_reserved_or_null(elem->obj()), 602 "must be NULL or an object"); 603 #ifdef ASSERT 604 thread->last_frame().interpreter_frame_verify_monitor(elem); 605 #endif 606 IRT_END 607 608 609 //%note monitor_1 610 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem)) 611 #ifdef ASSERT 612 thread->last_frame().interpreter_frame_verify_monitor(elem); 613 #endif 614 Handle h_obj(thread, elem->obj()); 615 assert(Universe::heap()->is_in_reserved_or_null(h_obj()), 616 "must be NULL or an object"); 617 if (elem == NULL || h_obj()->is_unlocked()) { 618 THROW(vmSymbols::java_lang_IllegalMonitorStateException()); 619 } 620 ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread); 621 // Free entry. This must be done here, since a pending exception might be installed on 622 // exit. If it is not cleared, the exception handling code will try to unlock the monitor again. 623 elem->set_obj(NULL); 624 #ifdef ASSERT 625 thread->last_frame().interpreter_frame_verify_monitor(elem); 626 #endif 627 IRT_END 628 629 630 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread)) 631 THROW(vmSymbols::java_lang_IllegalMonitorStateException()); 632 IRT_END 633 634 635 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread)) 636 // Returns an illegal exception to install into the current thread. The 637 // pending_exception flag is cleared so normal exception handling does not 638 // trigger. Any current installed exception will be overwritten. This 639 // method will be called during an exception unwind. 640 641 assert(!HAS_PENDING_EXCEPTION, "no pending exception"); 642 Handle exception(thread, thread->vm_result()); 643 assert(exception() != NULL, "vm result should be set"); 644 thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures) 645 if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) { 646 exception = get_preinitialized_exception( 647 SystemDictionary::IllegalMonitorStateException_klass(), 648 CATCH); 649 } 650 thread->set_vm_result(exception()); 651 IRT_END 652 653 654 //------------------------------------------------------------------------------------------------------------------------ 655 // Invokes 656 657 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, methodOopDesc* method, address bcp)) 658 return method->orig_bytecode_at(method->bci_from(bcp)); 659 IRT_END 660 661 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, methodOopDesc* method, address bcp, Bytecodes::Code new_code)) 662 method->set_orig_bytecode_at(method->bci_from(bcp), new_code); 663 IRT_END 664 665 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, methodOopDesc* method, address bcp)) 666 JvmtiExport::post_raw_breakpoint(thread, method, bcp); 667 IRT_END 668 669 IRT_ENTRY(void, InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode)) 670 // extract receiver from the outgoing argument list if necessary 671 Handle receiver(thread, NULL); 672 if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) { 673 ResourceMark rm(thread); 674 methodHandle m (thread, method(thread)); 675 Bytecode_invoke* call = Bytecode_invoke_at(m, bci(thread)); 676 symbolHandle signature (thread, call->signature()); 677 receiver = Handle(thread, 678 thread->last_frame().interpreter_callee_receiver(signature)); 679 assert(Universe::heap()->is_in_reserved_or_null(receiver()), 680 "sanity check"); 681 assert(receiver.is_null() || 682 Universe::heap()->is_in_reserved(receiver->klass()), 683 "sanity check"); 684 } 685 686 // resolve method 687 CallInfo info; 688 constantPoolHandle pool(thread, method(thread)->constants()); 689 690 { 691 JvmtiHideSingleStepping jhss(thread); 692 LinkResolver::resolve_invoke(info, receiver, pool, 693 get_index_u2_cpcache(thread, bytecode), bytecode, CHECK); 694 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 695 int retry_count = 0; 696 while (info.resolved_method()->is_old()) { 697 // It is very unlikely that method is redefined more than 100 times 698 // in the middle of resolve. If it is looping here more than 100 times 699 // means then there could be a bug here. 700 guarantee((retry_count++ < 100), 701 "Could not resolve to latest version of redefined method"); 702 // method is redefined in the middle of resolve so re-try. 703 LinkResolver::resolve_invoke(info, receiver, pool, 704 get_index_u2_cpcache(thread, bytecode), bytecode, CHECK); 705 } 706 } 707 } // end JvmtiHideSingleStepping 708 709 // check if link resolution caused cpCache to be updated 710 if (already_resolved(thread)) return; 711 712 if (bytecode == Bytecodes::_invokeinterface) { 713 714 if (TraceItables && Verbose) { 715 ResourceMark rm(thread); 716 tty->print_cr("Resolving: klass: %s to method: %s", info.resolved_klass()->name()->as_C_string(), info.resolved_method()->name()->as_C_string()); 717 } 718 if (info.resolved_method()->method_holder() == 719 SystemDictionary::Object_klass()) { 720 // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec 721 // (see also cpCacheOop.cpp for details) 722 methodHandle rm = info.resolved_method(); 723 assert(rm->is_final() || info.has_vtable_index(), 724 "should have been set already"); 725 cache_entry(thread)->set_method(bytecode, rm, info.vtable_index()); 726 } else { 727 // Setup itable entry 728 int index = klassItable::compute_itable_index(info.resolved_method()()); 729 cache_entry(thread)->set_interface_call(info.resolved_method(), index); 730 } 731 } else { 732 cache_entry(thread)->set_method( 733 bytecode, 734 info.resolved_method(), 735 info.vtable_index()); 736 } 737 IRT_END 738 739 740 // First time execution: Resolve symbols, create a permanent CallSite object. 741 IRT_ENTRY(void, InterpreterRuntime::resolve_invokedynamic(JavaThread* thread)) { 742 ResourceMark rm(thread); 743 744 assert(EnableInvokeDynamic, ""); 745 746 const Bytecodes::Code bytecode = Bytecodes::_invokedynamic; 747 748 methodHandle caller_method(thread, method(thread)); 749 750 constantPoolHandle pool(thread, caller_method->constants()); 751 pool->set_invokedynamic(); // mark header to flag active call sites 752 753 int caller_bci = 0; 754 int site_index = 0; 755 { address caller_bcp = bcp(thread); 756 caller_bci = caller_method->bci_from(caller_bcp); 757 site_index = Bytes::get_native_u4(caller_bcp+1); 758 } 759 assert(site_index == InterpreterRuntime::bytecode(thread)->get_index_u4(bytecode), ""); 760 assert(constantPoolCacheOopDesc::is_secondary_index(site_index), "proper format"); 761 // there is a second CPC entries that is of interest; it caches signature info: 762 int main_index = pool->cache()->secondary_entry_at(site_index)->main_entry_index(); 763 int pool_index = pool->cache()->entry_at(main_index)->constant_pool_index(); 764 765 // first resolve the signature to a MH.invoke methodOop 766 if (!pool->cache()->entry_at(main_index)->is_resolved(bytecode)) { 767 JvmtiHideSingleStepping jhss(thread); 768 CallInfo callinfo; 769 LinkResolver::resolve_invoke(callinfo, Handle(), pool, 770 site_index, bytecode, CHECK); 771 // The main entry corresponds to a JVM_CONSTANT_InvokeDynamic, and serves 772 // as a common reference point for all invokedynamic call sites with 773 // that exact call descriptor. We will link it in the CP cache exactly 774 // as if it were an invokevirtual of MethodHandle.invoke. 775 pool->cache()->entry_at(main_index)->set_method( 776 bytecode, 777 callinfo.resolved_method(), 778 callinfo.vtable_index()); 779 } 780 781 // The method (f2 entry) of the main entry is the MH.invoke for the 782 // invokedynamic target call signature. 783 oop f1_value = pool->cache()->entry_at(main_index)->f1(); 784 methodHandle signature_invoker(THREAD, (methodOop) f1_value); 785 assert(signature_invoker.not_null() && signature_invoker->is_method() && signature_invoker->is_method_handle_invoke(), 786 "correct result from LinkResolver::resolve_invokedynamic"); 787 788 Handle info; // optional argument(s) in JVM_CONSTANT_InvokeDynamic 789 Handle bootm = SystemDictionary::find_bootstrap_method(caller_method, caller_bci, 790 main_index, info, CHECK); 791 if (!java_dyn_MethodHandle::is_instance(bootm())) { 792 THROW_MSG(vmSymbols::java_lang_IllegalStateException(), 793 "no bootstrap method found for invokedynamic"); 794 } 795 796 // Short circuit if CallSite has been bound already: 797 if (!pool->cache()->secondary_entry_at(site_index)->is_f1_null()) 798 return; 799 800 symbolHandle call_site_name(THREAD, pool->name_ref_at(site_index)); 801 802 Handle call_site 803 = SystemDictionary::make_dynamic_call_site(bootm, 804 // Callee information: 805 call_site_name, 806 signature_invoker, 807 info, 808 // Caller information: 809 caller_method, 810 caller_bci, 811 CHECK); 812 813 // In the secondary entry, the f1 field is the call site, and the f2 (index) 814 // field is some data about the invoke site. Currently, it is just the BCI. 815 // Later, it might be changed to help manage inlining dependencies. 816 pool->cache()->secondary_entry_at(site_index)->set_dynamic_call(call_site, signature_invoker); 817 } 818 IRT_END 819 820 821 //------------------------------------------------------------------------------------------------------------------------ 822 // Miscellaneous 823 824 825 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) { 826 nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp); 827 assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests"); 828 if (branch_bcp != NULL && nm != NULL) { 829 // This was a successful request for an OSR nmethod. Because 830 // frequency_counter_overflow_inner ends with a safepoint check, 831 // nm could have been unloaded so look it up again. It's unsafe 832 // to examine nm directly since it might have been freed and used 833 // for something else. 834 frame fr = thread->last_frame(); 835 methodOop method = fr.interpreter_frame_method(); 836 int bci = method->bci_from(fr.interpreter_frame_bcp()); 837 nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false); 838 } 839 return nm; 840 } 841 842 IRT_ENTRY(nmethod*, 843 InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp)) 844 // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized 845 // flag, in case this method triggers classloading which will call into Java. 846 UnlockFlagSaver fs(thread); 847 848 frame fr = thread->last_frame(); 849 assert(fr.is_interpreted_frame(), "must come from interpreter"); 850 methodHandle method(thread, fr.interpreter_frame_method()); 851 const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci; 852 const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci; 853 854 nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, thread); 855 856 if (osr_nm != NULL) { 857 // We may need to do on-stack replacement which requires that no 858 // monitors in the activation are biased because their 859 // BasicObjectLocks will need to migrate during OSR. Force 860 // unbiasing of all monitors in the activation now (even though 861 // the OSR nmethod might be invalidated) because we don't have a 862 // safepoint opportunity later once the migration begins. 863 if (UseBiasedLocking) { 864 ResourceMark rm; 865 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>(); 866 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 867 kptr < fr.interpreter_frame_monitor_begin(); 868 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 869 if( kptr->obj() != NULL ) { 870 objects_to_revoke->append(Handle(THREAD, kptr->obj())); 871 } 872 } 873 BiasedLocking::revoke(objects_to_revoke); 874 } 875 } 876 return osr_nm; 877 IRT_END 878 879 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(methodOopDesc* method, address cur_bcp)) 880 assert(ProfileInterpreter, "must be profiling interpreter"); 881 int bci = method->bci_from(cur_bcp); 882 methodDataOop mdo = method->method_data(); 883 if (mdo == NULL) return 0; 884 return mdo->bci_to_di(bci); 885 IRT_END 886 887 IRT_ENTRY(jint, InterpreterRuntime::profile_method(JavaThread* thread, address cur_bcp)) 888 // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized 889 // flag, in case this method triggers classloading which will call into Java. 890 UnlockFlagSaver fs(thread); 891 892 assert(ProfileInterpreter, "must be profiling interpreter"); 893 frame fr = thread->last_frame(); 894 assert(fr.is_interpreted_frame(), "must come from interpreter"); 895 methodHandle method(thread, fr.interpreter_frame_method()); 896 int bci = method->bci_from(cur_bcp); 897 methodOopDesc::build_interpreter_method_data(method, THREAD); 898 if (HAS_PENDING_EXCEPTION) { 899 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); 900 CLEAR_PENDING_EXCEPTION; 901 // and fall through... 902 } 903 methodDataOop mdo = method->method_data(); 904 if (mdo == NULL) return 0; 905 return mdo->bci_to_di(bci); 906 IRT_END 907 908 909 #ifdef ASSERT 910 IRT_LEAF(void, InterpreterRuntime::verify_mdp(methodOopDesc* method, address bcp, address mdp)) 911 assert(ProfileInterpreter, "must be profiling interpreter"); 912 913 methodDataOop mdo = method->method_data(); 914 assert(mdo != NULL, "must not be null"); 915 916 int bci = method->bci_from(bcp); 917 918 address mdp2 = mdo->bci_to_dp(bci); 919 if (mdp != mdp2) { 920 ResourceMark rm; 921 ResetNoHandleMark rnm; // In a LEAF entry. 922 HandleMark hm; 923 tty->print_cr("FAILED verify : actual mdp %p expected mdp %p @ bci %d", mdp, mdp2, bci); 924 int current_di = mdo->dp_to_di(mdp); 925 int expected_di = mdo->dp_to_di(mdp2); 926 tty->print_cr(" actual di %d expected di %d", current_di, expected_di); 927 int expected_approx_bci = mdo->data_at(expected_di)->bci(); 928 int approx_bci = -1; 929 if (current_di >= 0) { 930 approx_bci = mdo->data_at(current_di)->bci(); 931 } 932 tty->print_cr(" actual bci is %d expected bci %d", approx_bci, expected_approx_bci); 933 mdo->print_on(tty); 934 method->print_codes(); 935 } 936 assert(mdp == mdp2, "wrong mdp"); 937 IRT_END 938 #endif // ASSERT 939 940 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci)) 941 assert(ProfileInterpreter, "must be profiling interpreter"); 942 ResourceMark rm(thread); 943 HandleMark hm(thread); 944 frame fr = thread->last_frame(); 945 assert(fr.is_interpreted_frame(), "must come from interpreter"); 946 methodDataHandle h_mdo(thread, fr.interpreter_frame_method()->method_data()); 947 948 // Grab a lock to ensure atomic access to setting the return bci and 949 // the displacement. This can block and GC, invalidating all naked oops. 950 MutexLocker ml(RetData_lock); 951 952 // ProfileData is essentially a wrapper around a derived oop, so we 953 // need to take the lock before making any ProfileData structures. 954 ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp())); 955 RetData* rdata = data->as_RetData(); 956 address new_mdp = rdata->fixup_ret(return_bci, h_mdo); 957 fr.interpreter_frame_set_mdp(new_mdp); 958 IRT_END 959 960 961 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread)) 962 // We used to need an explict preserve_arguments here for invoke bytecodes. However, 963 // stack traversal automatically takes care of preserving arguments for invoke, so 964 // this is no longer needed. 965 966 // IRT_END does an implicit safepoint check, hence we are guaranteed to block 967 // if this is called during a safepoint 968 969 if (JvmtiExport::should_post_single_step()) { 970 // We are called during regular safepoints and when the VM is 971 // single stepping. If any thread is marked for single stepping, 972 // then we may have JVMTI work to do. 973 JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread)); 974 } 975 IRT_END 976 977 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj, 978 ConstantPoolCacheEntry *cp_entry)) 979 980 // check the access_flags for the field in the klass 981 instanceKlass* ik = instanceKlass::cast((klassOop)cp_entry->f1()); 982 typeArrayOop fields = ik->fields(); 983 int index = cp_entry->field_index(); 984 assert(index < fields->length(), "holders field index is out of range"); 985 // bail out if field accesses are not watched 986 if ((fields->ushort_at(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return; 987 988 switch(cp_entry->flag_state()) { 989 case btos: // fall through 990 case ctos: // fall through 991 case stos: // fall through 992 case itos: // fall through 993 case ftos: // fall through 994 case ltos: // fall through 995 case dtos: // fall through 996 case atos: break; 997 default: ShouldNotReachHere(); return; 998 } 999 bool is_static = (obj == NULL); 1000 HandleMark hm(thread); 1001 1002 Handle h_obj; 1003 if (!is_static) { 1004 // non-static field accessors have an object, but we need a handle 1005 h_obj = Handle(thread, obj); 1006 } 1007 instanceKlassHandle h_cp_entry_f1(thread, (klassOop)cp_entry->f1()); 1008 jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_cp_entry_f1, cp_entry->f2(), is_static); 1009 JvmtiExport::post_field_access(thread, method(thread), bcp(thread), h_cp_entry_f1, h_obj, fid); 1010 IRT_END 1011 1012 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread, 1013 oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value)) 1014 1015 klassOop k = (klassOop)cp_entry->f1(); 1016 1017 // check the access_flags for the field in the klass 1018 instanceKlass* ik = instanceKlass::cast(k); 1019 typeArrayOop fields = ik->fields(); 1020 int index = cp_entry->field_index(); 1021 assert(index < fields->length(), "holders field index is out of range"); 1022 // bail out if field modifications are not watched 1023 if ((fields->ushort_at(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return; 1024 1025 char sig_type = '\0'; 1026 1027 switch(cp_entry->flag_state()) { 1028 case btos: sig_type = 'Z'; break; 1029 case ctos: sig_type = 'C'; break; 1030 case stos: sig_type = 'S'; break; 1031 case itos: sig_type = 'I'; break; 1032 case ftos: sig_type = 'F'; break; 1033 case atos: sig_type = 'L'; break; 1034 case ltos: sig_type = 'J'; break; 1035 case dtos: sig_type = 'D'; break; 1036 default: ShouldNotReachHere(); return; 1037 } 1038 bool is_static = (obj == NULL); 1039 1040 HandleMark hm(thread); 1041 instanceKlassHandle h_klass(thread, k); 1042 jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_klass, cp_entry->f2(), is_static); 1043 jvalue fvalue; 1044 #ifdef _LP64 1045 fvalue = *value; 1046 #else 1047 // Long/double values are stored unaligned and also noncontiguously with 1048 // tagged stacks. We can't just do a simple assignment even in the non- 1049 // J/D cases because a C++ compiler is allowed to assume that a jvalue is 1050 // 8-byte aligned, and interpreter stack slots are only 4-byte aligned. 1051 // We assume that the two halves of longs/doubles are stored in interpreter 1052 // stack slots in platform-endian order. 1053 jlong_accessor u; 1054 jint* newval = (jint*)value; 1055 u.words[0] = newval[0]; 1056 u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag 1057 fvalue.j = u.long_value; 1058 #endif // _LP64 1059 1060 Handle h_obj; 1061 if (!is_static) { 1062 // non-static field accessors have an object, but we need a handle 1063 h_obj = Handle(thread, obj); 1064 } 1065 1066 JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), h_klass, h_obj, 1067 fid, sig_type, &fvalue); 1068 IRT_END 1069 1070 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread)) 1071 JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread)); 1072 IRT_END 1073 1074 1075 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread)) 1076 JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread)); 1077 IRT_END 1078 1079 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc)) 1080 { 1081 return (Interpreter::contains(pc) ? 1 : 0); 1082 } 1083 IRT_END 1084 1085 1086 // Implementation of SignatureHandlerLibrary 1087 1088 address SignatureHandlerLibrary::set_handler_blob() { 1089 BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size); 1090 if (handler_blob == NULL) { 1091 return NULL; 1092 } 1093 address handler = handler_blob->code_begin(); 1094 _handler_blob = handler_blob; 1095 _handler = handler; 1096 return handler; 1097 } 1098 1099 void SignatureHandlerLibrary::initialize() { 1100 if (_fingerprints != NULL) { 1101 return; 1102 } 1103 if (set_handler_blob() == NULL) { 1104 vm_exit_out_of_memory(blob_size, "native signature handlers"); 1105 } 1106 1107 BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer", 1108 SignatureHandlerLibrary::buffer_size); 1109 _buffer = bb->code_begin(); 1110 1111 _fingerprints = new(ResourceObj::C_HEAP)GrowableArray<uint64_t>(32, true); 1112 _handlers = new(ResourceObj::C_HEAP)GrowableArray<address>(32, true); 1113 } 1114 1115 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) { 1116 address handler = _handler; 1117 int insts_size = buffer->pure_insts_size(); 1118 if (handler + insts_size > _handler_blob->code_end()) { 1119 // get a new handler blob 1120 handler = set_handler_blob(); 1121 } 1122 if (handler != NULL) { 1123 memcpy(handler, buffer->insts_begin(), insts_size); 1124 pd_set_handler(handler); 1125 ICache::invalidate_range(handler, insts_size); 1126 _handler = handler + insts_size; 1127 } 1128 return handler; 1129 } 1130 1131 void SignatureHandlerLibrary::add(methodHandle method) { 1132 if (method->signature_handler() == NULL) { 1133 // use slow signature handler if we can't do better 1134 int handler_index = -1; 1135 // check if we can use customized (fast) signature handler 1136 if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) { 1137 // use customized signature handler 1138 MutexLocker mu(SignatureHandlerLibrary_lock); 1139 // make sure data structure is initialized 1140 initialize(); 1141 // lookup method signature's fingerprint 1142 uint64_t fingerprint = Fingerprinter(method).fingerprint(); 1143 handler_index = _fingerprints->find(fingerprint); 1144 // create handler if necessary 1145 if (handler_index < 0) { 1146 ResourceMark rm; 1147 ptrdiff_t align_offset = (address) 1148 round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer; 1149 CodeBuffer buffer((address)(_buffer + align_offset), 1150 SignatureHandlerLibrary::buffer_size - align_offset); 1151 InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint); 1152 // copy into code heap 1153 address handler = set_handler(&buffer); 1154 if (handler == NULL) { 1155 // use slow signature handler 1156 } else { 1157 // debugging suppport 1158 if (PrintSignatureHandlers) { 1159 tty->cr(); 1160 tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)", 1161 _handlers->length(), 1162 (method->is_static() ? "static" : "receiver"), 1163 method->name_and_sig_as_C_string(), 1164 fingerprint, 1165 buffer.insts_size()); 1166 Disassembler::decode(handler, handler + buffer.insts_size()); 1167 #ifndef PRODUCT 1168 tty->print_cr(" --- associated result handler ---"); 1169 address rh_begin = Interpreter::result_handler(method()->result_type()); 1170 address rh_end = rh_begin; 1171 while (*(int*)rh_end != 0) { 1172 rh_end += sizeof(int); 1173 } 1174 Disassembler::decode(rh_begin, rh_end); 1175 #endif 1176 } 1177 // add handler to library 1178 _fingerprints->append(fingerprint); 1179 _handlers->append(handler); 1180 // set handler index 1181 assert(_fingerprints->length() == _handlers->length(), "sanity check"); 1182 handler_index = _fingerprints->length() - 1; 1183 } 1184 } 1185 } else { 1186 CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops()); 1187 } 1188 if (handler_index < 0) { 1189 // use generic signature handler 1190 method->set_signature_handler(Interpreter::slow_signature_handler()); 1191 } else { 1192 // set handler 1193 method->set_signature_handler(_handlers->at(handler_index)); 1194 } 1195 } 1196 #ifdef ASSERT 1197 { 1198 // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized 1199 // in any way if accessed from multiple threads. To avoid races with another 1200 // thread which may change the arrays in the above, mutex protected block, we 1201 // have to protect this read access here with the same mutex as well! 1202 MutexLocker mu(SignatureHandlerLibrary_lock); 1203 assert(method->signature_handler() == Interpreter::slow_signature_handler() || 1204 _handlers->find(method->signature_handler()) == _fingerprints->find(Fingerprinter(method).fingerprint()), 1205 "sanity check"); 1206 } 1207 #endif 1208 } 1209 1210 1211 BufferBlob* SignatureHandlerLibrary::_handler_blob = NULL; 1212 address SignatureHandlerLibrary::_handler = NULL; 1213 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL; 1214 GrowableArray<address>* SignatureHandlerLibrary::_handlers = NULL; 1215 address SignatureHandlerLibrary::_buffer = NULL; 1216 1217 1218 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, methodOopDesc* method)) 1219 methodHandle m(thread, method); 1220 assert(m->is_native(), "sanity check"); 1221 // lookup native function entry point if it doesn't exist 1222 bool in_base_library; 1223 if (!m->has_native_function()) { 1224 NativeLookup::lookup(m, in_base_library, CHECK); 1225 } 1226 // make sure signature handler is installed 1227 SignatureHandlerLibrary::add(m); 1228 // The interpreter entry point checks the signature handler first, 1229 // before trying to fetch the native entry point and klass mirror. 1230 // We must set the signature handler last, so that multiple processors 1231 // preparing the same method will be sure to see non-null entry & mirror. 1232 IRT_END 1233 1234 #if defined(IA32) || defined(AMD64) 1235 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address)) 1236 if (src_address == dest_address) { 1237 return; 1238 } 1239 ResetNoHandleMark rnm; // In a LEAF entry. 1240 HandleMark hm; 1241 ResourceMark rm; 1242 frame fr = thread->last_frame(); 1243 assert(fr.is_interpreted_frame(), ""); 1244 jint bci = fr.interpreter_frame_bci(); 1245 methodHandle mh(thread, fr.interpreter_frame_method()); 1246 Bytecode_invoke* invoke = Bytecode_invoke_at(mh, bci); 1247 ArgumentSizeComputer asc(invoke->signature()); 1248 int size_of_arguments = (asc.size() + (invoke->has_receiver() ? 1 : 0)); // receiver 1249 Copy::conjoint_jbytes(src_address, dest_address, 1250 size_of_arguments * Interpreter::stackElementSize); 1251 IRT_END 1252 #endif